
An Efficient Cloud Auditing Scheme for Data
Integrity and Identity-Privacy of Multiple Uploaders

Zeyad A. Al-Odat and Samee U. Khan
Department of Electrical and Computer Engineering

North Dakota State University
Fargo, ND, USA

Email: zeyad.alodat@ndsu.edu, samee.khan@ndsu.edu

Abstract—On the cloud, data are not only stored on multiple
locations, but also shared across multiple users. The integrity
of data on the cloud is subject to doubt due to cloud failures.
Therefore, many techniques are available to verify the existence
of data on the cloud without retrieving the entire file. However,
the data auditing techniques reveal confidential information to
the designated verifier which breach the identity of the data
uploaders. This paper introduces a privacy-preserving scheme for
multiple data uploaders over the cloud. In the proposed design,
the identities of the data block signers are hidden from a Third
Party Auditor (TPA). A Secure Hash Algorithm (SHA) is also
employed to provide an integral auditing report between the data
owner(s) and the TPA. The proposed design is tested and verified
mathematically and experimentally using a set of synthesized
data.

Index Terms—Privacy, Cloud, Auditing, Security.

I. INTRODUCTION

Cloud computing provides an efficient and wide range of
services over scalable storage locations. These services include
data sharing between multiple users, where each user can edit
the existing data or upload a new one.

The data in the cloud are susceptible to lose or damage due
to software or hardware failures of the cloud service provider
(CSP) [1]. The traditional way to verify the existence of data
is to retrieve the entire file from the cloud and check the
data signature or hash using the conventional cryptography
approaches. However, the verification process becomes harder
because retrieving large data file consumes time and efforts [2].

Provable data possession is the method of verifying that the
cloud server still possesses the stored data [3]. This includes
traditional or other verification methods. The need to verify
the integrity of data over the cloud becomes essential because
cloud service providers offer the computation services of
cloud data files directly without download. Therefore, many
techniques were proposed to allow the data owners or a hired
third party to verify the existence of data without any need for
data download [4].

In some cases, e.g., election and top-secret reports, the
data owners delegate the process of results verification to a
Third Party Auditor (TPA). But, when the TPA reveals the
identity of each member of the data owners, then a risk of
data confidentiality will arise [5]. Therefore, the TPA is only
allowed to check the correctness and integrity of data without
any knowledge about the identity of the owners. Moreover, the

stored data might be lost due to software/hardware failures or
an adversary tries to corrupt users’ data. The CSP tries to
deceive the data owners or the TPAs by a fake report about
the existence of their data [6]. Therefore, a complete auditing
scheme has to be able to limit the TPA privileges and provide
an authentic tool to check data integrity.

This paper provides a Privacy-Preserving scheme of Mul-
tiple data Uploaders on the Cloud (PPMUC). The proposed
work presents an efficient data verification scheme to check
the integrity and existence of stored data over the cloud.
Moreover, the PPMUC hides the data owners identities from
being revealed to the TPA.

The rest of paper is organized as follows. Section 2 gives
preliminary information related to our scheme. Section 3
provides a literature review of the related works. The proposed
methodology is presented in section 4. Results and Discussion
in section 5. Section 6 concludes the paper.

II. PRELIMINARIES

Before going through the details of our proposal, brief de-
scriptions about the system components, the general structure
of the TPA model, and the threat model need to be addressed.

A. System components

There are three main components in the TPA scheme which
construct the verification system of shared data on the cloud.

1) Cloud Service Provider (CSP). The CSP provides the
storage locations for the shared data files and responds to
the TPA queries (challenges). Each data block is stored
as a tuple of three values (index, block (m), and tag).
The index represents the message identifier, the block
field represents the block’s content, and tag contains the
signature of the block creator.

2) Data Uploader. The uploader is any group member of the
data owners that has a secret key to sign his corresponding
block. Then, the corresponding block content, index, and
tag are uploaded to the shared storage location.

3) TPA. The verification of the existence of data in the cloud
is given to the TPA. The TPA performs the verification
process by sending a challenging command to the CSP.
The validity of the data integrity is checked according to
the received response from the CSP.



B. General structure of the TPA

When data owners hire a TPA to audit their data, the general
procedure is accomplished according to Figure 1. The figure
shows the general structure of TPA scheme. The data owners
(Alice and Bob) have the same priority to create, upload, and
modify the data blocks. Each user in the group signs the data
block when any action is performed. The TPA verifies the
existence of data by sending a challenge command to the CSP.
The proof of data existence is determined according to the CSP
response to the TPA challenge [7].

Cloud

A B
TPA

Challenge

Response

Index Block (m) tag

1 m1 σ1

2 m2 σ2

. . .

. . .

s ms σn

Block Signer

1 A

2 B

. .

. .

s A

Fig. 1: Alice and Bob share their data in the Cloud, and the
TPA verifies the existence of data [7].

However, the TPA can determine the identity of each block
signer, which leads to the disclosure of the identity of the data
uploaders.

C. Threat Model

Two major threats are related to this area of study.
1) Integrity Threat. The shared data in the cloud might be

corrupted by an adversary, or the CSP loses the stored
data due to software/hardware failure of the cloud system.
In such a case, the CSP will be averse to inform the data
owners about the data loss to avoid losing customers.
Therefore, the CSP tries to deceive the TPA by forging
the response report to provide a positive inquiry [8].
Moreover, a collision attack forms a serious threat when
a weak secure hash algorithm is used [9].

2) Uploader Privacy Threat. The identity of the data signer is
confidential and only related to the group of data owners.
Therefore, during the verification process, the TPA is only
allowed to check the data integrity without knowing the
identity of each data signer. Once the TPA reveals the
signer of each data block, then it will be easy for the TPA
to discriminate between the high and low-value users.
Consequently, determine the high confidential data from
the level of its corresponding signer [10].

III. RELATED WORK

The idea of anonymous signature schemes was first intro-
duced by Chaum and Heyst [11]. In their design, a trust group

manager creates a group of users and assigns special secret
keys distributed over the group members. Some users can
create and sign messages using the secret keys on behalf of the
group. A public verifier is unable to distinguish the identities
of data signers. However, the group manager can revoke the
identity of the signers.

In 2001 Rivest et al. came up with a ring signature
scheme which generates a group of multiple users without a
manager [12]. In this scheme, each user creates his own secret
keys pair (public-private) and signs a message in such a way
that no one in the group can determine his identity. However,
in some cases, when a single user signs a message with his
private key — without declaring a set of possible signers —
then his identity might be revealed.

The anonymous signature scheme is applied to shared cloud
data when multiple users work on shared data blocks. Each
user has a distinct private-public key pair and the identity of
each block signer (user) is anonymous from the others [13].
The idea of the group signature, where a group manager can
trace the group members actions, was presented in [14]. The
proposed work presents an anonymous and tractable group
data sharing over the cloud. The authors employed the group
signature scheme by Chaum and Heyst to implement their
design. The experimental results showed an improvement in
the verification time but showed a degradation in time when
user identity is revoked. Using the same group signature
approach, Li et al. employed the group signature for the
privacy-preserving of mobile sensing data [15]. The proposed
design divides the regions of cellular infrastructure into groups
with each group contains a number of users. The group
signature allows the manager of each group to determine the
misbehaving user inside the group region.

However, the data uploaders over the cloud, in some cases,
want to hide their identity from other users or entities. To
hide the signer identities from all users and verifiers, Wang et
al. proposed a privacy scheme for public data auditing [16].
The proposed design provides a public data auditing over
the cloud with an identity-privacy approach. The identities
of the data uploaders are made hidden from both the group
members and the third party auditors. In their design, they
exploit the ring signature scheme to anonymously upload data
blocks and verify data integrity over the cloud. Moreover, Wu
et al. in [17] followed the same ring signature approach for
privacy-preserving. An Anonymous Cloud Auditing scheme
with Multiple Uploaders (ACAMU) was presented. The pro-
posed design helps the data owners to hide their identity
from a hired third-party auditor. A mathematical model was
studied and prove the efficiency of their proposal. However,
no experiment was conducted to show the applicability of
their design. Moreover, to achieve the privacy-preserving of
multiple data uploaders, Cong et al. proposed a scheme that
combines the public key homomorphic authenticator with
random masking. The proposed design achieve the privacy
requirements of auditing and identity hiding [18].

In this paper, we are introducing a Privacy-Preserving model
for Multiple data Uploaders over the Cloud (PPMUC). In our



design, we used a modified ring signature scheme to deploy
our proposal, and the Secure Hash Algorithm (SHA-512) is
used to consolidate the proposed design. In the subsequent
section, Details about the PPMUC will be presented.

IV. PROPOSED METHODOLOGY

The PPMUC helps to verify the existence of data over the
cloud through a hired TPA. Brief descriptions about the Bi-
linear Map and Bilinear Diffie-Hellman (BDH) are presented
before going through the details of our proposal. The reader
is advised to refer to Table I, which lists the notations that
are used in this section. Please refer to the table to clarify the
meaning of each symbol.

TABLE I: Notations

Symbols Meaning
A Efficient algorithm A
∀ For all
H Hash value after applying the SHA− 512
∃ Exists

Zp big prime p
G Group
e bilinear map
θ Tag
π message response L(0)

CSP Cloud Service Provider
Pukn public key of user n
Prkn private key of user n

A. Bilinear Map

To understand the PPMUC, the Bilinear Map mathematical
notation and definition need to be addressed. The subsequent
definitions identify the meaning and properties of the bilinear
map and BDH. For more details about these definitions, the
reader is advised to read [19]–[21].

Definition 1. Let G1, G2, and G3 be multiplicative cyclic
groups of order p. Suppose g1 is the generator of G1, and
g2 is the generator of G2. Then, a bilinear map e is de-
fined as e : G1 �G2 ! G3 and satisfies the bilinearity, non-
degeneracy, and computability properties.

Each property is defined as follows:
� Bilinearity: 8 u 2 G1, v 2 G2, and a; b 2 Zp, then
e(ua; vb) = e(u; v)ab.

� Non-degeneracy: 8 gi 9 e ) e(g1; g2; :::; gi) 6= 1.
� Computability: 8 u; v 2 G1 and G2 respectively, and
a; b 2 Zp. 9 A s:t A) e

B. Bilinear Diffie-Hellman (BDH) Assumption

Definition 2. BDH Problem. The advantage (�) of Algorithm
A in solving Discrete Logarithm (DL) problem for G1 of the
bilinear map e is defined as:

� � Pr[A(g; ga; gb) A(g; ga; gb):

Then, with a negligible advantage, A satisfies the BDH
assumption.

C. PPMUC Model

The PPMUC model consists of six functions: create, gen-
erate, sign, challenge, response, and verify. Each function per-
forms designated operations to fulfill the security requirements
and protect the system against any possible threat.

1) Create. This function is responsible for the group creation
where n group members are added to the group.

2) Generate. Each member of the group generates a pair of
public and private keys (Pukn; P rkn) that is assigned to
the nth user.

3) Sign. The nth uploader uses his corresponding private
key (Prkn) to calculate the tag (�n;m) of the nth block
(Bn), and uploads the tuple (ID;Bn; �n;m) to the cloud.

4) Challenge. When the group members want to audit their
data, they send all public keys of the group members
along with randomly picked block indices to the TPA.
Then, the TPA generates the challenge and sends it to
the CSP.

5) Response. Once the CSP receives the challenge from the
TPA, the response (�; �) is prepared and sent back to the
TPA.

6) Verify. The existence of the data is verified by the TPA
according to the CSP response. Then, the TPA prepares
the verification report, signs it using the Secure Hash
Algorithm (SHA-512), and sends it back to the Group
members.

Figure 2 shows the general structure of the proposed
scheme. In this design, all group members have the same
priority without group manager. Each user creates his own
keys pair (Pub,Prk), which is used to generate a block tag
(�). Afterward, the tuple (ID;Bn; �n) is uploaded to the cloud
for sharing and storage.

When the group members want to verify their data, they
send a "depute" request to the TPA which contains all users
public keys (Pukn)1 and a subset of randomly picked block
indices (Q). Then, the TPA prepares the "challenge" order and
sends it to the CSP.

The CSP receives the challenge request from the TPA and
starts to compute the response using the blocks (Bn) and their
corresponding tags (�n), where n 2 Q. Once completed, the
CSP sends the response back to the TPA as (�; ��) pair, where
� refers to the blocks calculations and �� refers to the tags’
calculations. The TPA verifies the correctness of the received
response by verifying the following:

Result
? � V erify(�; ��; Pukn; Q);

where result is the output of the verification process that is
conducted by the TPA.

In case of a collision attack by an adversary (A), the TPA
uses the Secure Hash Algorithm (SHA-512) to sign the result
before sending it to the Group. On receiving the result report,
the group members check the correctness of the received
report by computing the SHA-512 value of the report. Once

1Public keys give no clue about the identity of their corresponding users.



Fig. 2: General architecture of the PPMUC scheme

verified, they read the query report about their data integrity
and existence.

PPMUC Procedure: The PPMUC process is accomplished
according to the following setup:
� A user ui, who wants to upload the data block (Bj),

selects a random value (xi). This value is used to generate
the public-private pair (Prki; puki), where xi = Prki.

� User ui picks a one time random value bt for all group
members, where t 6= i, and assigns �t = gbt

1 . Afterward,
user Ui signs a message block (Bj) using (1).

�i;j =

�
�Q

t6=i Puk
bt
t

�1=xi

; (1)

where � = H(j):g
Bj

1 , and H is the secure hash algo-
rithm function. After the completion of block generation
and sign, the index (j), block (Bj), and tag (�i;j) are
combined as one tuple and uploaded to the cloud for
sharing.

� To check the integrity and existence of the data, the
TPA sends a challenge request to the CSP. This request
contains the public keys of the group members and a set
of randomly picked block indices (Puki, Q).

� At the server side, the CSP computes the response using
(2) and (3).

� =
X
j2Q

j:Bj (2)

�� =
Y

i;j2Q

e(�i;j ; Puki); (3)

where e is the bilinear map between � and Puk. When
the response is ready, the CSP sends it to the TPA as (��,
�).

� The verification process is accomplished by the TPA
after receiving the CSP’s response. The TPA checks the
correctness of the received response using (4).

��
?
= e(�; Pubk): (4)

The bilinear map (e) between the � and the Pukk must
be equal to the �� value.

� The TPA computes the (SHA-512) hash value for the
result, appends it to the report, and sends it back to the
client.

� The client (group) receives the report from the TPA. The
report is verified first by computing the SHA-512 hash
value and compare it with the append hash value. Then,
if the two hashes are equal, the report contains the correct
auditing information about the data on the cloud.

V. RESULTS AND DISCUSSION

The proposed design provides a secure infrastructure against
three main security threats: 1) a cheat CSP, 2) an eager TPA,
and 3) data integrity. The cheat CSP tries to deceive the TPA
or group members about the existence of their data in case of
hardware or software failure. An eager TPA tries to know the


