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Abstract—With the advent of High Performance Computing 

(HPC) in the large-scale parallel computational environment, 

job scheduling and resource allocation techniques are required 

to deliver the Quality of Service (QoS) and resource 

management. Therefore, job scheduling on a large-scale 

parallel system has been studied to: (a) minimize the queue 

time and response time, and (b) maximize the overall system 

utilization. We compare and analyze thirteen job scheduling 

policies to analyze their behavior. The set of job scheduling 

policies include: (a) priority-based policies, (b) first fit, (c) 

backfilling techniques, and (d) window-based policies. All of 

the policies are extensively simulated and compared. A real 

data center workload comprised of 22385 jobs is used for 

simulation. We analyze the: (a) queue time, (b) response time, 

and (c) slowdown ratio to evaluate the policies. Moreover, we 

present a comprehensive workload characterization that can 

be used as a tool for optimizing system’s performance and for 

scheduler design. We investigate four categories of the 

workload characteristics including: (a) Narrow, (b) Wide, (c) 

Short, and (d) Long for detailed analysis of the schedulers’ 

performance. This study highlights the strengths and weakness 

of various job scheduling polices and helps to choose an 

appropriate job scheduling policy in a given scenario. 

Keywords- Large-scale Parallel Computational Systems; Job 

Scheduling; Workload Characterization;  Data center; 

I.  INTRODUCTION  

Scientific organizations are increasingly adopting high 

performance computing (HPC) for solving large problems, 

which increases the computational and storage needs. In the 

last decade, various scientific organizations have spent ample 

budget to carry out research projects using supercomputers 

[1]. Because of the fact that supercomputers are unaffordable 

for various organizations, they were forced to choose low-

budget solutions. Consequently, cloud environment emerged 

as an alternate to provide the facility of large-scale parallel 

computations. Currently, many cloud Resource Providers 

(RPs) offer thousands of computational nodes and variety of 

services to facilitate end-users.  

In the large-scale parallel computational environments, 

the end-users submit their requests unaware of the resource 

allocation. Unusually, these requests are complex jobs, 

which may be computation-intensive (i.e., job demands 

more CPU time) or data-intensive (i.e., job demands more 

storage space and communication). Moreover, these requests 

may require different levels of Quality of Service (QoS), 

including job turnaround time and queue time. Furthermore, 

the large-scale parallel computational environments consist 

of (a) the mixture of applications and (b) a pool of finite 

resources meeting the demands of end-users.  

For the above identified factors, RPs pay considerable 

attention to resource management to deliver the required 

QoS and enhance system utilization. Several researchers 

focus on resource management to optimize the system 

performance considering various QoS constraints. The job 

scheduling policy is one of the major components of 

resource management system for solving the above problems 

in such environments. A scheduling process involves 

assigning resources to jobs such that no other jobs access the 

resources at the same time interval [10]. However, due to 

dynamic nature of the workload, the scheduling problem is 

hard to solve, and an active research direction for resource 

management. The scheduling policy should behave equally 

well considering the resource heterogeneity and the 

workload variability. 

Considering the aforementioned issues, the contribution 

of this paper is two-fold: (a) comprehensive characterization 

of real world workloads, and (b) comparison and analysis of 

a set of scheduling policies to evaluate system’s 

performance. The analysis of job scheduling policies will 

help to select an appropriate job scheduling policy for a 

given scenario. Additionally, this paper presents an 

investigation that how workload characteristics affect job-

scheduling performance. Collecting log files from a real 

production system is a common approach to estimate the 

future workloads [11]. Therefore, we collected a real data 

center workload for the experimental evaluation to simulate 

and analyze the policies considered in this paper. As the 

workload characterization is a major factor for evaluation of 

the system performance [12], we present a comprehensive 

characterization. The study of workload characterization 

motivates to interpret the difference between jobs’ 

computation time, and identify the similar and repeatable 

workload trends.  



We examine thirteen job-scheduling policies: five 

priority-based policies, one tuning policy, one window-based 

policy, and two backfilling techniques. The priority-based 

scheduling policies are: (a) First Come First Serve (FCFS), 

(b) Smallest Job First (SJF), (c) Largest Job First (LJF), (d) 

Minimum estimated Execution Time (MinET), and (e) 

Maximum estimated Execution Time (MaxET). The 

aforementioned priority-based scheduling policies are tuned 

by applying the First Fit (FF) technique. 

Moreover, we use a window based scheduling policy 

called Window-K. Furthermore, we consider two backfilling 

techniques namely: (a) Aggressive Backfilling and (b) K-

reserved based technique. Both backfilling techniques work 

in conjunction with the FCFS policy.  

We simulate all of these scheduling policies with real 

data center workload. In all of the studied scheduling 

policies, the assumptions and job parameters (i.e., number of 

jobs, tasks in each job, estimated time of job execution, and 

submission time of each job) remain same to maintain a fair 

comparison. The aforementioned policies are analyzed by 

numerous results wherein we split the workload to create 

multiple datasets. This assumption allows determining, 

which job scheduling policy produces better results under 

different datasets. We use four class-based job observations 

for detailed analysis and comparison of scheduler 

performance. We performed detailed analysis and observed 

interesting findings, such as: (a) MinET and SJF when 

combined with FF technique exhibit better performance 

compared to other policies, and (b) a large number of small 

jobs in the workload can stop the MaxET policy for 

producing at least same results compared to MinET policy 

with certain job characteristics.  
The rest of the paper is organized as follows. Section II 

states the related work, followed by the comprehensive 
characterization and analysis of data center workload in 
Section III. Section IV presents the simulation results of the 
real data center workload using several well-known job-
scheduling policies. Performance analysis and comparison 
analysis is detailed in Section V. Finally, Section VI 
concludes the paper and highlights future research directions. 

II. RELATED WORK 

In large-scale parallel computational environment, RPs 

offers dynamic and geographically distributed access to 

computational and storage resources. RPs aim to efficiently 

utilize the finite resources to a vast number of users, and to 

maintain the different QoS levels [2]. The resource 

management problem can be handled by selecting an 

appropriate job scheduling technique for performance 

optimization. A vast body of research such as [3] - [9] has 

focused on resource management through scheduling 

techniques to address the problem of resource allocation 

under the different QoS constraints. For instance, author in 

[3] propose metric-aware scheduling, which enables the 

scheduler to balance competing scheduling goals represented 

by different metrics, such as job waiting time, fairness, and 

system utilization. Khan used a self-adaptive weighted sum 

technique in [4], [5], game theoretical methodologies in [6], 

and goal programming approach in [7] to optimize the 

system performance for grid resource allocation under 

different QoS constraints. Tracy et al. [8] studied eleven 

static heuristics for mapping a class of independent task onto 

heterogeneous distributed computing system. The authors 

analyzed and implemented a collection of task mapping 

policies under one set of common assumptions. The author 

in [9] compared the performance of six online scheduling 

algorithms for batch jobs by simulating keeping in 

consideration the three objective functions including 

makespan, average flowtime, and maximum wait-time. This 

paper addresses the similar problem of system performance 

through a comparative study of job scheduling strategies. 

Additionally, these environments respond to large 

number of users with pay-per-use and pay-as-you-go 

methods, and execute several jobs in parallel. These jobs 

require long execution times and are considered 

computation-intensive. The expected workloads for large-

scale parallel computational environments consist of a 

mixture of applications that demand different resources, 

which result in highly variable workloads [13]. Feitelson et 

al. [27] described parallel workload models in detail, and 

explained standard workload format for large-scale parallel 

computing environments. The author used publically 

available parallel workloads from [28] that consist of 

various real world workloads obtained from several large-

scale parallel computers. These workloads have been 

characterized and analyzed in [30], [31], and observed 

similarities and differences in workload characteristics, such 

as different arrival patterns in peak or non-peak intervals 

and “power-of-two” number of processor requirement for 

job execution. Workload characterization is considered a 

useful approach for system design. Therefore, we examine 

and characterize the workloads in different perspectives to 

find out similarities and differences that can be used as a 

tool for system’s performance optimization. 
In the state-of-the-art, various authors used publically 

available workloads to analyze scheduler performance. Most 
of the authors make certain assumptions about the nature of 
jobs to present a specific real system for their experiments. 
In contrast, we have collected the log files from a real data 
center for an evaluation that is closer to real scenarios. 
Moreover, we study a set of scheduling policies to analyze 
and compare simulation results, highlighting their 
performance. 

III. CHARATERIZATION OF DATA CENTER WORKLOAD 

The system performance is evaluated considering the 

characteristics of hardware and software components, as well 

as the workload it processes [12]. Workload characterization 

helps in understanding overall behavior of the system 

highlighting, job arrival rate, job size, and job length. Major 

challenges include:  (a) how to manage the system for 

different loads, (b) how to utilize the resources efficiently, 



 
Fig. 1: Total offered load in a month per day 
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(c) how to meet user demands, and (d) how to minimize the 

Total Cost of Ownership (TCO). Aforementioned questions 

mandate the RPs to select appropriate resource management 

techniques, such as job scheduling policies (see Section 

IV.A).    

A. Workload’s information 

We characterized a real data center workload from the 

Center for Computational Research (CCR) of State 

University of New York at Buffalo to evaluate the system 

performance. The data center is a collection of multiple 

computational resources clustered together using 

communication infrastructure, which fall into two categories: 

(a) homogeneous and (b) heterogeneous resources. The 

resources in homogeneous systems are similar in terms of 

size and capacity, in which a job executes in similar capacity, 

whereas the resources in heterogeneous system are organized 

with different specification.  
The workloads were collected during 30 days’ time 

period from 20 February 2009 to 22 March 2009. A total of 
22385 jobs were executed on more than 1000 dual processor 
nodes [33]. A complete specification of the data center is 
presented in Table I.    

TABLE I.  FULL SPECIFICATION OF DATA CENTER  

Time Duration 20 Feb. 2009 to 22 Mar. 2009 

Total Jobs ran out on DC 22385 

Total Distinct Nodes 1045 

Processor name 1056 Dell PowerEdge SC1425 nodes 

Processor Speed 3.0GHz or 3.2GHz 

OS x86 64 Linux 

Peak performance 13 TFlop/s 

The total offered load which is the amount of queued 

workload over time is shown in Fig. 1. The offered load 

exceeds 100% in many days, which implies that enough 

resources are unavailable to complete the tasks given to 

system in particular time. 

B. Job’s information 

A job is generated by user and submitted to the system. 
The system in turn, according to its scheduling policy, 
allocates a number of processors meeting the demands of the 

job in question. In this section, we characterize jobs 
according to different perspectives, such as job arrival rate 
on specific time and job size. Fig. 2 shows the total number 
of jobs arrived per hour in 30-day cycle. From this figure we 
can make two observations: (a) there are fluctuations in the 
job arrival rate per hour, (b) the system experiences high job 
arrival rates in specific times, and (c) job arrival rate does not 
follow a uniform trend at hourly cycle. 

In terms of the job size we make the following 
observations. The job size can be well explained in 2D chart 
with a number of processors along one axis and an execution 
time along another axis (see Section IV.A) [15]. Therefore, 
we distribute the job size into two perspectives: (a) job’s 
width and (b) job’s length, to show the size regarding the 
number of CPUs required by the job and the execution time 
of the job. The above perspectives are further classified into 
four categories: (a) Narrow, (b) Wide, (c) Short, and (d) 
Long. Specifically, in the first perspective jobs request (a) a 
single CPU (we call Narrow category) and (b) even number 
of CPUs (we call Wide category). While other perspective in 
view of job length, the jobs are executed (c) within an hour 
(we classify it in Short category) and (d) more than an hour 
(we classify it in Long category). The above categories are 
classified based on the aforementioned workloads. Fig. 3 
shows the job distribution according to their width (CPU 
requirement). Our analysis revealed that the jobs demand 
either single CPU (i.e., Narrow jobs) or even number of 
CPUs (i.e., Wide jobs). It is worth mentioning that the 
number of Narrow jobs is dominant, i.e., 79% percent of the 
total jobs, whereas, 21% of the total jobs are in Wide 
category.  

The job length exhibits the time length of the job being 
executed. We observed in Table II that almost 50% (half of 
the total jobs) belongs to the Short category. Consequently, 
the rest of the jobs belong to the Long category.  

 Fig. 2 Jobs arriving per hour 

 
Fig. 3: Jobs breakdown according to number of CPUs 



 
(a) Short Jobs 

 
(b) Long Jobs 

 

Fig. 4 Breakdown distribution of the (a) Short jobs and (b) Long jobs 
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TABLE II.  BREAKDOWN DISTRIBUTION FOR JOB LENGTH  

Job length No. of jobs % of jobs 

< 1 hour (Short) 10428 46.58 

> 1 hour (Long) 11957 53.42 

Total 22385 100 

       
Fig. 4 presents the classification of the jobs in (a) Short 

and (b) Long categories. It can be observed that most of the 
Short jobs (around 86%) are executed within 18 minutes, 
while around 66.6% of the long jobs execute within 12 
hours.  

We also analyzed the job size to address correlation 
between both perspectives job width and job length, shown 
in Table III. The correlation table reveals the result that 
Narrow jobs dominate all of the categories in both 
perspectives. Moreover, Short jobs with execution time 
between 11 to 20 minutes and Long jobs with execution time 
more than 11 hours are also prevailing. 

TABLE III.  PERCENTAGE BREAKDOWN FOR CORRELATION BETWEEN 

JOBS WIDTH AND LENGTH  

Job Size 
Job Width 

1 CPU 2~24 CPUs > 32 CPUs Total jobs 

J
o

b
 L

e
n

g
th

 

< 1 Min. 4.83 0.58 0.13 5.55 

2~10 Min. 7.60 0.90 0.38 8.88 

11~20 Min. 20.72 3.40 2.97 27.09 

21~60 Min. 3.73 1.07 0.27 5.07 

2~4 hours 13.23 0.67 0.68 14.57 

5~8 hours 18.43 0.15 0.16 18.74 

> 9 hours 10.73 8.27 1.10 20.11 

Total Jobs 79.27 15.03 5.70 100 

 
In the above workload characterization, the analysis 

revealed important job characteristics, such as jobs arrival 
rate does not follow any trend and heterogeneity in the job 
size and requirements. Such heterogeneity in workloads 
dictates to analyze the effect of various scheduling policies 
in such scenarios. 

IV. EXPERIEMENTAL SETUP 

This section presents the experimental setup regarding 
the set of scheduling policies. All of the policies are used to 
schedule the aforementioned workload to figure out the best 
job scheduling policies for optimizing the system 
performance. 

A. Job scheduling policies 

The scheduler is a major component for managing the 

resources of large-scale parallel environments. A policy in 

scheduler is used to assign jobs to resources in specific time 

intervals such that the capacity of resources should meet 

jobs’ needs [10]. Suppose     is a total number of machines, 

   (       ) to process    jobs,     (       ). A 

job     is a program submitted by a user at a specific time 

interval (submit-time). Each job contains one or more 

tasks      (       ), with each of these tasks being 

executed on separate CPU for a given time period. A 

complete scheduling process schedules the job and allocates 

one or more time intervals of one or more machines as 

shown in Fig. 5. The corresponding scheduling policy 

problem is to find an optimal schedule process subject to 

various constraints. 

The schedulers achieve the scheduling process by using 

either a static or a dynamic scheduling method. In the static 

scheduling method, the set of jobs are known apriory, while 

the dynamic method performs scheduling at job arrival. Due 

to the fact that the jobs arrival rate and the status of some 

nodes (off-line or online) may change without any a-priori 

knowledge, the dynamic scheduling method is required [17].  

Moreover, the scheduling process is categorized into 

two groups: (a) batch mode and (b) online mode scheduling. 

In an online mode, the job is scheduled on nodes 

immediately upon its arrival, while the batch mode 

schedulers collect the jobs in a queue. A set of jobs 

considered for scheduling includes newly arrived jobs and 

the jobs that were unscheduled in the earlier scheduling 

events, called meta-tasks. The meta-tasks are examined by 

corresponding scheduling policy at prescheduled times 

called scheduling events. The scheduler event can be defined 

through regular time interval such as every 10 seconds [17].  

The batch scheduling method is successfully applied in 

large-scale parallel environments including banking system, 

health system, virtual campuses, and bio-informatics 

applications. However, the batch scheduling method and the 

independent nature of jobs is hard to solve [17]. We use 

dynamic method with batch mode scheduling process, where 

we assume the jobs are grouped in batches and executed 

independently in the dynamic environment.    

Similar to the aforementioned different scheduler 

properties, the scheduling process can be further considered 

as a family of problems with respect to different job models. 
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Fig. 5 A Gantt chart for Job Scheduling process 



These job models directly affect the scheduling policies, 

which are inspired by the way the systems are managed and 

how the parallel applications are written [18]. In such a 

model, job flexibility is an advanced partitioning method 

supported by application (i.e., rigid, moldable, evolving, and 

malleable job flexibility). A number of processor assigned to 

a job is specified either external to scheduler called rigid job 

or by system scheduler categorized as a 

moldable/evolving/malleable job (wherein all categories, the 

number of processor may change throughout job execution). 

Another model for schedulers is to support different level of 

preemption, such as preemption and non-preemption. In 

preemption level, the tasks or entire job can be preempted 

and migrated during the job execution (i.e., Gang 

scheduling). While in the non-preemption scheduling, the 

processors will be dedicated to the job throughout their 

execution after allocation. Preemption method may have 

great advantage in terms of system performance 

improvement, but it also possesses associated overheads, 

such as cost of memory due to migration and preemption 

[18]. Therefore, we consider non-preemptive scheduling 

process in our experiments. 

Considering the above scheduler properties, we simulate 

thirteen different scheduling policies. All of these policies 

are described below.  

FCFS is a simple and static job scheduling policy, where 

a job is served on arrival basis. In this policy, a job can 

create long delay for next jobs whenever ready processor 

does not meet requirement of the job. LJF and SJF, both 

scheduling policies update the batch of jobs (i.e., meta-task) 

in decreasing and increasing order in terms of job’s size (i.e., 

job width), respectively. While MinET and MaxET, both 

perform the same operation in decreasing and increasing 

order in terms of job’s length, respectively [17]. FF is an 

additional technique to enhance capability of the above five 

policies. FF policy finds a job in shared ordered queue list 

that can be fit on first idle resources in such a way the 

resources can be utilized. 

A backfilling technique [19], [20] makes resource 

reservations for jobs, then backfills the jobs only if next jobs 

(i.e., Short jobs) do not violate time reserved for previous 

jobs. There are two basic backfilling techniques: (a) 

aggressive and (b) conservative. The aggressive technique 

makes a reservation only for first job, while second 

backfilling technique makes reservations for all jobs in the 

shared queue. The aggressive backfilling (known EAZY) 

was developed for IBM SP1 parallel supercomputer, which 

is based on FCFS scheduling policy [19], [20]. We used 

aggressive backfilling technique because its performance 

superior to conservative technique [20].  
In K-reserved based policy, a waiting request has a 

counter containing K number of times that it has been 
overtaken by subsequent requests [21]. K-reserved based 
policy works likely aggressive backfilling technique with 
difference only K-reserved based policy backfill only K 
numbers of jobs, while aggressive technique does not have 

any number of jobs limit to backfill the jobs. Window-K 
policy enhances the FCFS policy for a window of 
consecutive jobs. The window starts with the oldest waiting 
job and contain up to K jobs that have arrived successively 
[21]. We set the K values to 5 and 10 in our experiments for 
K-reserved based policy and Window-K policy, respectively. 

B. Simulation setup 

For the workloads simulation, we used a custom Java-
based discrete event simulator. Java provides full advantage 
of Object-Oriented Programming (OOP) technique [22]. A 
typical object-oriented software system implementation is 
centered on dynamic creation, manipulation, storing, and 
releasing of objects [23], [24]. The Java environment setup 
also allows database connectivity, where we stored all the 
datasets. We simulated all of the policies several times to get 
accurate result for the experiments. We create event-based 
setup, in which scheduler policies (Java programs) invokes 
after every 10 seconds interval (i.e., event). For approaching 
the real setup, in iteration the interval is incremented with 
job submission timestamp, which updates the queue to 
collect the meta-task.  

V. ANALYZING AND COMPARING THE RESULTS 

In this section, we analyze all of the considered 
scheduling policies. We evaluate their performance by 
measuring four metrics: (a) mean queue-time, (b) mean 
response-time, (c) mean slowdown, and (d) slowdown ratio. 
These metrics answer to our two major concerns, i.e., in the 
first order concern, service providers always care about the 
cost (mean response-time) and customers care about the 
slowdown ratio. The queue-time is our second order concern, 
which can be used to explain the mean response-time and 
slowdown ratio. An elapsed time from (when a job arrives) 
to (when job assigns to nodes for execution) is a job’s queue-
time, and an elapsed time from (when a job arrives) to (when 
job completes execution) is a job’s response-time [29]. 
Equation 1 and 2 can be used to calculate the mean response-
time and queue-time of the entire workload.  
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Another metrics, Mean slowdown is a normalized time of 

each job (i.e., job completion time divided by job running 

time), and slowdown ratio exhibits a normalized time of 

mean response-time [32] derived in Equation 3. 
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where Time (mean_response) and Time (mean_execution) 
indicate mean response-time and mean running time of the 
entire workload. Suppose, a mean response-time of a set of 
jobs was 10 hours and their mean execution-time on nodes 
was 5 hours, then slowdown ratio will be 2 hours. Slowdown 
ratio is perfect and easy metric for measuring performance of 
the scheduling policy for the entire workload [29]. 
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Fig. 6 Comparison results of all policies with overall workloads: (a) Mean queue-time, (b) Mean response-time, (c) Box-Plot for queue-time of all jobs, (d) 

Box-plot for response-time of all jobs, and (f) Mean slowdown. 

Fig. 6 shows the results for the above performance 
measurement metrics for the entire workload: (a) mean 
queue-time, (b) mean response-time, (c) queue time, and (d) 
response time for all jobs, (e) mean slowdown, and (f) 
slowdown ratio. We create best order of the scheduling 
policies for showing the results in which all figures are 
depicted.  

We further compare the performance measurement 
metrics in terms of job size correlations. We create four job 
observations based on job categories to investigate, how job 
characteristics affect the scheduling accuracy. Table IV 
shows their classification, such as short and narrow (SN),  
long and narrow (LN), short and wide (SW), and long and 
wide (LW) jobs. The above four job observations are defined 
below with their results being shown in Fig. 7, Fig. 8, Fig. 9, 
and Fig. 10. 

 
                                              (Ob.1) 

 

                                              (Ob.2) 

 

                                                 (Ob.3) 

 

                                                 (Ob.4) 

 

 

TABLE IV.  OBSERVATION TABLE FOR ENTIRE WORKLOADS (JOB’S 

BREAKDOWNS FOR CORRELATION BETWEEN JOB’S WIDTH AND JOB’S 

LENGTH)  

Job size 
Short (S) Long (L) 

Total 
<= 1 Hr > 1 Hr 

Narrow (N) 1 CPU 36.88 42.39 79.27 

Wide (W) > 1 CPU 9.70 11.03 20.73 

Total 46.58 53.42 100.00 

 

A. Discussion 

Recalling the workload characterization in Section III, 

we explored the job characteristics before scheduling 

process. The important job characteristics are: (a) The 

maximum percent of total jobs requesting single CPU for 

execution and (b) percentage of jobs requesting even number 

of CPUs.  

Another remarks in terms of job running time is that 

around half of the total jobs execute within an hour (Short 

jobs), while the half of the jobs require more than an hour 

(Long jobs). Moreover, jobs arrival rate did not follow a 

uniform trend. The above findings exhibit the workload 

heterogeneity that may affect various services offered by the 

large-scale parallel system. Therefore, it is essential to 

compare and analyze different scheduling policies.   



 

Fig. 7 Comparison results of all policies with overall workloads in first observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean 

slowdown 
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 Fig. 8 Comparison results of all policies with overall workloads in second observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean 
slowdown 
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Fig. 9 Comparison results of all policies with overall workloads in third observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean 

slowdown 
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Fig. 10 Comparison results of all policies with overall workloads in fourth observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean 

slowdown 



Various job-scheduling policies are studied in this paper 

for large-scale parallel computational system. Some job 

scheduling policies produce results with overheads. 

However, each policy possess various characteristics, such as 

FCFS produces better results with respect to fairness, but 

does not support resource fragmentation. If a job demands a 

large number of CPUs for execution and at that time period 

system cannot serve the job due to insufficient CPUs, then 

the job waits in queue and blocks next job even the next job 

demands less CPUs or small execution time than the first 

job. In consequent, insufficient CPUs for the first job create 

an idle space until enough CPUs become idle, and 

consequently, increase the job queue time as well as the 

response time.  

The results of FCFS policy in all of the figures in the 

previous section exhibit unsatisfied results in terms of job 

queue time and response time metrics. A solution of the 

processors fragmentation problem is introduced in 

backfilling technique (i.e., conservative and aggressive [19], 

[20]) with addition to maintain the fairness situation. 

However, with the specific job characteristics, other job 

scheduling policies become superior to FCFS. For instance, 

with respect to the job size (i.e., job’s width), LJF produce 

better result for Wide jobs, while SJF exhibits better results 

to dispatch Narrow jobs. Similarly, according to job running 

time (i.e., job’s length), MaxET and MinET policies are well 

suited for Long jobs and Short jobs, respectively.  

The results in the Section V for comparing the policies 

can be well explained in three different classes. These classes 

distinguish the scheduling policies into three different sets of 

policies, such as Class-I, Class-II, and Class-III. The sets of 

the scheduling policies are explained below.  

Class-I includes four policies: MinET, SJF, and both policies 

with FF technique. In the Class-II, FF technique with FCFS, 

LJF, and MaxET, aggressive backfilling (EAZY), and K-

reserved based (Max_Pri) policies are included. Finally, 

Class-III comprises four policies: FCFS, LJF, MaxET, and 

Window-K policies.  

We found that the policies in Class-I produced better 

results as compared to the policies in Class-II and Class-III. 

The policies in Class-II are superior to the policies in Class-

III.     

The major reason for the SJF policy being superior to 

other policies in all the figures is a due to a large number of 

Narrow jobs that require single CPU. Alternatively, for the 

MinET and MaxET policies, we have already highlighted 

that (a) MinET and MaxET produce result with respect to 

user’ estimated running time, and (b) the job length 

characterized in almost same percent of Long jobs as well as 

Short jobs. Because of the above highlighted factors in the 

job length characterization, it can be assumed that MinET 

and MaxET policies may produce almost same result. The 

results shown in Fig. 6 reveal that MaxET policy is neglected 

for producing the same results as MinET produced because 

of maximum number of Narrow jobs. Moreover, this reason 

is also considered for MinET-FF producing better result.  

 Fig. 7 and Fig. 8 present the observation results for 

Narrow jobs. The number of jobs in both observations is 

36% and 42% percent of the total jobs in overall workload, 

respectively. In the first figure, the jobs belong to SN 

category, while second figure addressed the results of LN 

jobs. Here in both of the figures, the scheduling policies in 

the Class-I dominate other classes. 

The results for Wide jobs (i.e., SW and LW) are shown 

in Fig. 9 and Fig. 10, and their job percentage is 10% and 

11%, respectively. In the first figure, the scheduling policies 

from both Class-I and Class-II exhibit better results as 

compared to the policies in Class-III, while Fig. 10 shows the 

results are almost same in all of the classes.  

In the above sections, we rigorously discussed the 

characterization and analysis of the real data center workload 

and several job-scheduling policies. We investigated that 

most of the job scheduling policies are affected significantly 

by certain workload characteristics. 

VI. CONCLUSION 

To enhance the performance of the cloud data centers, 

job scheduling and resource allocation techniques are needed 

to maintain various levels of QoS. We studied a set of job 

scheduling policies, and characterized real data center 

workload for optimizing system’s performance. A total of 

thirteen job scheduling policies were studied to analyze and 

compare results. A set of job scheduling policies includes (a) 

priority-based policies, (b) tuning policy, (c) backfilling 

techniques, and (d) window-based technique. We used mean 

queue time, mean response time, mean slowdown, and 

slowdown ratio metrics to evaluate the performance of the 

job scheduling policies. All of the policies were extensively 

simulated and compared using a real data center workload. 

The workload exhibited a wide range of job heterogeneity. 

We first characterized the workload and unveiled different 

job characteristics, such as jobs demand either single CPU or 

even number of CPUs for execution, and percent 47% and 

53% of total jobs executed within an hour and more than an 

hour, respectively. Moreover, we examined the results 

through job scheduling implementation. MinET and SJF 

when combined with FF technique exhibit better results as 

compared to the other policies.  

Our analysis revealed that a single policy is not 

sufficient for resource management in parallel computational 

environments. Such environments need to implement 

dynamic and adaptive scheduling policy. In future work, we 

will propose the configuration-based policy to balance the 

scheduling policies for non-uniform workloads and for 

power consumptions. 
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