
A Comparative Study of Job Scheduling Strategies in

Large-scale Parallel Computational Systems

Aftab Ahmed Chandio
1,3

, Cheng-Zhong Xu
1,2

, Nikos Tziritas
1

1
Shenzhen Institutes of Advanced Technology

Chinese Academy of Sciences, Shenzhen, China
2
Wayne State University, Detroit, USA

3
University of Sindh, Jamshoro, Pakistan

{aftabac, cz.xu, nikolaos}@siat.ac.cn

Kashif Bilal and Samee U. Khan

Department of Electrical and Computer Engineering, North

Dakota State University, Fargo, USA

{kashif.bilal, same.khan}@ndsu.edu

Abstract—With the advent of High Performance Computing

(HPC) in the large-scale parallel computational environment,

job scheduling and resource allocation techniques are required

to deliver the Quality of Service (QoS) and resource

management. Therefore, job scheduling on a large-scale

parallel system has been studied to: (a) minimize the queue

time and response time, and (b) maximize the overall system

utilization. We compare and analyze thirteen job scheduling

policies to analyze their behavior. The set of job scheduling

policies include: (a) priority-based policies, (b) first fit, (c)

backfilling techniques, and (d) window-based policies. All of

the policies are extensively simulated and compared. A real

data center workload comprised of 22385 jobs is used for

simulation. We analyze the: (a) queue time, (b) response time,

and (c) slowdown ratio to evaluate the policies. Moreover, we

present a comprehensive workload characterization that can

be used as a tool for optimizing system’s performance and for

scheduler design. We investigate four categories of the

workload characteristics including: (a) Narrow, (b) Wide, (c)

Short, and (d) Long for detailed analysis of the schedulers’

performance. This study highlights the strengths and weakness

of various job scheduling polices and helps to choose an

appropriate job scheduling policy in a given scenario.

Keywords- Large-scale Parallel Computational Systems; Job

Scheduling; Workload Characterization; Data center;

I. INTRODUCTION

Scientific organizations are increasingly adopting high

performance computing (HPC) for solving large problems,

which increases the computational and storage needs. In the

last decade, various scientific organizations have spent ample

budget to carry out research projects using supercomputers

[1]. Because of the fact that supercomputers are unaffordable

for various organizations, they were forced to choose low-

budget solutions. Consequently, cloud environment emerged

as an alternate to provide the facility of large-scale parallel

computations. Currently, many cloud Resource Providers

(RPs) offer thousands of computational nodes and variety of

services to facilitate end-users.

In the large-scale parallel computational environments,

the end-users submit their requests unaware of the resource

allocation. Unusually, these requests are complex jobs,

which may be computation-intensive (i.e., job demands

more CPU time) or data-intensive (i.e., job demands more

storage space and communication). Moreover, these requests

may require different levels of Quality of Service (QoS),

including job turnaround time and queue time. Furthermore,

the large-scale parallel computational environments consist

of (a) the mixture of applications and (b) a pool of finite

resources meeting the demands of end-users.

For the above identified factors, RPs pay considerable

attention to resource management to deliver the required

QoS and enhance system utilization. Several researchers

focus on resource management to optimize the system

performance considering various QoS constraints. The job

scheduling policy is one of the major components of

resource management system for solving the above problems

in such environments. A scheduling process involves

assigning resources to jobs such that no other jobs access the

resources at the same time interval [10]. However, due to

dynamic nature of the workload, the scheduling problem is

hard to solve, and an active research direction for resource

management. The scheduling policy should behave equally

well considering the resource heterogeneity and the

workload variability.

Considering the aforementioned issues, the contribution

of this paper is two-fold: (a) comprehensive characterization

of real world workloads, and (b) comparison and analysis of

a set of scheduling policies to evaluate system’s

performance. The analysis of job scheduling policies will

help to select an appropriate job scheduling policy for a

given scenario. Additionally, this paper presents an

investigation that how workload characteristics affect job-

scheduling performance. Collecting log files from a real

production system is a common approach to estimate the

future workloads [11]. Therefore, we collected a real data

center workload for the experimental evaluation to simulate

and analyze the policies considered in this paper. As the

workload characterization is a major factor for evaluation of

the system performance [12], we present a comprehensive

characterization. The study of workload characterization

motivates to interpret the difference between jobs’

computation time, and identify the similar and repeatable

workload trends.

We examine thirteen job-scheduling policies: five

priority-based policies, one tuning policy, one window-based

policy, and two backfilling techniques. The priority-based

scheduling policies are: (a) First Come First Serve (FCFS),

(b) Smallest Job First (SJF), (c) Largest Job First (LJF), (d)

Minimum estimated Execution Time (MinET), and (e)

Maximum estimated Execution Time (MaxET). The

aforementioned priority-based scheduling policies are tuned

by applying the First Fit (FF) technique.

Moreover, we use a window based scheduling policy

called Window-K. Furthermore, we consider two backfilling

techniques namely: (a) Aggressive Backfilling and (b) K-

reserved based technique. Both backfilling techniques work

in conjunction with the FCFS policy.

We simulate all of these scheduling policies with real

data center workload. In all of the studied scheduling

policies, the assumptions and job parameters (i.e., number of

jobs, tasks in each job, estimated time of job execution, and

submission time of each job) remain same to maintain a fair

comparison. The aforementioned policies are analyzed by

numerous results wherein we split the workload to create

multiple datasets. This assumption allows determining,

which job scheduling policy produces better results under

different datasets. We use four class-based job observations

for detailed analysis and comparison of scheduler

performance. We performed detailed analysis and observed

interesting findings, such as: (a) MinET and SJF when

combined with FF technique exhibit better performance

compared to other policies, and (b) a large number of small

jobs in the workload can stop the MaxET policy for

producing at least same results compared to MinET policy

with certain job characteristics.
The rest of the paper is organized as follows. Section II

states the related work, followed by the comprehensive
characterization and analysis of data center workload in
Section III. Section IV presents the simulation results of the
real data center workload using several well-known job-
scheduling policies. Performance analysis and comparison
analysis is detailed in Section V. Finally, Section VI
concludes the paper and highlights future research directions.

II. RELATED WORK

In large-scale parallel computational environment, RPs

offers dynamic and geographically distributed access to

computational and storage resources. RPs aim to efficiently

utilize the finite resources to a vast number of users, and to

maintain the different QoS levels [2]. The resource

management problem can be handled by selecting an

appropriate job scheduling technique for performance

optimization. A vast body of research such as [3] - [9] has

focused on resource management through scheduling

techniques to address the problem of resource allocation

under the different QoS constraints. For instance, author in

[3] propose metric-aware scheduling, which enables the

scheduler to balance competing scheduling goals represented

by different metrics, such as job waiting time, fairness, and

system utilization. Khan used a self-adaptive weighted sum

technique in [4], [5], game theoretical methodologies in [6],

and goal programming approach in [7] to optimize the

system performance for grid resource allocation under

different QoS constraints. Tracy et al. [8] studied eleven

static heuristics for mapping a class of independent task onto

heterogeneous distributed computing system. The authors

analyzed and implemented a collection of task mapping

policies under one set of common assumptions. The author

in [9] compared the performance of six online scheduling

algorithms for batch jobs by simulating keeping in

consideration the three objective functions including

makespan, average flowtime, and maximum wait-time. This

paper addresses the similar problem of system performance

through a comparative study of job scheduling strategies.

Additionally, these environments respond to large

number of users with pay-per-use and pay-as-you-go

methods, and execute several jobs in parallel. These jobs

require long execution times and are considered

computation-intensive. The expected workloads for large-

scale parallel computational environments consist of a

mixture of applications that demand different resources,

which result in highly variable workloads [13]. Feitelson et

al. [27] described parallel workload models in detail, and

explained standard workload format for large-scale parallel

computing environments. The author used publically

available parallel workloads from [28] that consist of

various real world workloads obtained from several large-

scale parallel computers. These workloads have been

characterized and analyzed in [30], [31], and observed

similarities and differences in workload characteristics, such

as different arrival patterns in peak or non-peak intervals

and “power-of-two” number of processor requirement for

job execution. Workload characterization is considered a

useful approach for system design. Therefore, we examine

and characterize the workloads in different perspectives to

find out similarities and differences that can be used as a

tool for system’s performance optimization.
In the state-of-the-art, various authors used publically

available workloads to analyze scheduler performance. Most
of the authors make certain assumptions about the nature of
jobs to present a specific real system for their experiments.
In contrast, we have collected the log files from a real data
center for an evaluation that is closer to real scenarios.
Moreover, we study a set of scheduling policies to analyze
and compare simulation results, highlighting their
performance.

III. CHARATERIZATION OF DATA CENTER WORKLOAD

The system performance is evaluated considering the

characteristics of hardware and software components, as well

as the workload it processes [12]. Workload characterization

helps in understanding overall behavior of the system

highlighting, job arrival rate, job size, and job length. Major

challenges include: (a) how to manage the system for

different loads, (b) how to utilize the resources efficiently,

Fig. 1: Total offered load in a month per day

0

20

40

60

80

100

120

140

160

180

200

Lo
a

d
 (

%
)

Total offered load

(c) how to meet user demands, and (d) how to minimize the

Total Cost of Ownership (TCO). Aforementioned questions

mandate the RPs to select appropriate resource management

techniques, such as job scheduling policies (see Section

IV.A).

A. Workload’s information

We characterized a real data center workload from the

Center for Computational Research (CCR) of State

University of New York at Buffalo to evaluate the system

performance. The data center is a collection of multiple

computational resources clustered together using

communication infrastructure, which fall into two categories:

(a) homogeneous and (b) heterogeneous resources. The

resources in homogeneous systems are similar in terms of

size and capacity, in which a job executes in similar capacity,

whereas the resources in heterogeneous system are organized

with different specification.
The workloads were collected during 30 days’ time

period from 20 February 2009 to 22 March 2009. A total of
22385 jobs were executed on more than 1000 dual processor
nodes [33]. A complete specification of the data center is
presented in Table I.

TABLE I. FULL SPECIFICATION OF DATA CENTER

Time Duration 20 Feb. 2009 to 22 Mar. 2009

Total Jobs ran out on DC 22385

Total Distinct Nodes 1045

Processor name 1056 Dell PowerEdge SC1425 nodes

Processor Speed 3.0GHz or 3.2GHz

OS x86 64 Linux

Peak performance 13 TFlop/s

The total offered load which is the amount of queued

workload over time is shown in Fig. 1. The offered load

exceeds 100% in many days, which implies that enough

resources are unavailable to complete the tasks given to

system in particular time.

B. Job’s information

A job is generated by user and submitted to the system.
The system in turn, according to its scheduling policy,
allocates a number of processors meeting the demands of the

job in question. In this section, we characterize jobs
according to different perspectives, such as job arrival rate
on specific time and job size. Fig. 2 shows the total number
of jobs arrived per hour in 30-day cycle. From this figure we
can make two observations: (a) there are fluctuations in the
job arrival rate per hour, (b) the system experiences high job
arrival rates in specific times, and (c) job arrival rate does not
follow a uniform trend at hourly cycle.

In terms of the job size we make the following
observations. The job size can be well explained in 2D chart
with a number of processors along one axis and an execution
time along another axis (see Section IV.A) [15]. Therefore,
we distribute the job size into two perspectives: (a) job’s
width and (b) job’s length, to show the size regarding the
number of CPUs required by the job and the execution time
of the job. The above perspectives are further classified into
four categories: (a) Narrow, (b) Wide, (c) Short, and (d)
Long. Specifically, in the first perspective jobs request (a) a
single CPU (we call Narrow category) and (b) even number
of CPUs (we call Wide category). While other perspective in
view of job length, the jobs are executed (c) within an hour
(we classify it in Short category) and (d) more than an hour
(we classify it in Long category). The above categories are
classified based on the aforementioned workloads. Fig. 3
shows the job distribution according to their width (CPU
requirement). Our analysis revealed that the jobs demand
either single CPU (i.e., Narrow jobs) or even number of
CPUs (i.e., Wide jobs). It is worth mentioning that the
number of Narrow jobs is dominant, i.e., 79% percent of the
total jobs, whereas, 21% of the total jobs are in Wide
category.

The job length exhibits the time length of the job being
executed. We observed in Table II that almost 50% (half of
the total jobs) belongs to the Short category. Consequently,
the rest of the jobs belong to the Long category.

 Fig. 2 Jobs arriving per hour

Fig. 3: Jobs breakdown according to number of CPUs

(a) Short Jobs

(b) Long Jobs

Fig. 4 Breakdown distribution of the (a) Short jobs and (b) Long jobs

0

2

4

6

8

10

N
o

.
o

f
Jo

b
s

(%
)

Minutes

0

2

4

6

8

10

N
o

.
o

f
Jo

b
s

(%
)

Hours

TABLE II. BREAKDOWN DISTRIBUTION FOR JOB LENGTH

Job length No. of jobs % of jobs

< 1 hour (Short) 10428 46.58

> 1 hour (Long) 11957 53.42

Total 22385 100

Fig. 4 presents the classification of the jobs in (a) Short

and (b) Long categories. It can be observed that most of the
Short jobs (around 86%) are executed within 18 minutes,
while around 66.6% of the long jobs execute within 12
hours.

We also analyzed the job size to address correlation
between both perspectives job width and job length, shown
in Table III. The correlation table reveals the result that
Narrow jobs dominate all of the categories in both
perspectives. Moreover, Short jobs with execution time
between 11 to 20 minutes and Long jobs with execution time
more than 11 hours are also prevailing.

TABLE III. PERCENTAGE BREAKDOWN FOR CORRELATION BETWEEN

JOBS WIDTH AND LENGTH

Job Size
Job Width

1 CPU 2~24 CPUs > 32 CPUs Total jobs

J
o

b
 L

e
n

g
th

< 1 Min. 4.83 0.58 0.13 5.55

2~10 Min. 7.60 0.90 0.38 8.88

11~20 Min. 20.72 3.40 2.97 27.09

21~60 Min. 3.73 1.07 0.27 5.07

2~4 hours 13.23 0.67 0.68 14.57

5~8 hours 18.43 0.15 0.16 18.74

> 9 hours 10.73 8.27 1.10 20.11

Total Jobs 79.27 15.03 5.70 100

In the above workload characterization, the analysis

revealed important job characteristics, such as jobs arrival
rate does not follow any trend and heterogeneity in the job
size and requirements. Such heterogeneity in workloads
dictates to analyze the effect of various scheduling policies
in such scenarios.

IV. EXPERIEMENTAL SETUP

This section presents the experimental setup regarding
the set of scheduling policies. All of the policies are used to
schedule the aforementioned workload to figure out the best
job scheduling policies for optimizing the system
performance.

A. Job scheduling policies

The scheduler is a major component for managing the

resources of large-scale parallel environments. A policy in

scheduler is used to assign jobs to resources in specific time

intervals such that the capacity of resources should meet

jobs’ needs [10]. Suppose is a total number of machines,

 () to process jobs, (). A

job is a program submitted by a user at a specific time

interval (submit-time). Each job contains one or more

tasks (), with each of these tasks being

executed on separate CPU for a given time period. A

complete scheduling process schedules the job and allocates

one or more time intervals of one or more machines as

shown in Fig. 5. The corresponding scheduling policy

problem is to find an optimal schedule process subject to

various constraints.

The schedulers achieve the scheduling process by using

either a static or a dynamic scheduling method. In the static

scheduling method, the set of jobs are known apriory, while

the dynamic method performs scheduling at job arrival. Due

to the fact that the jobs arrival rate and the status of some

nodes (off-line or online) may change without any a-priori

knowledge, the dynamic scheduling method is required [17].

Moreover, the scheduling process is categorized into

two groups: (a) batch mode and (b) online mode scheduling.

In an online mode, the job is scheduled on nodes

immediately upon its arrival, while the batch mode

schedulers collect the jobs in a queue. A set of jobs

considered for scheduling includes newly arrived jobs and

the jobs that were unscheduled in the earlier scheduling

events, called meta-tasks. The meta-tasks are examined by

corresponding scheduling policy at prescheduled times

called scheduling events. The scheduler event can be defined

through regular time interval such as every 10 seconds [17].

The batch scheduling method is successfully applied in

large-scale parallel environments including banking system,

health system, virtual campuses, and bio-informatics

applications. However, the batch scheduling method and the

independent nature of jobs is hard to solve [17]. We use

dynamic method with batch mode scheduling process, where

we assume the jobs are grouped in batches and executed

independently in the dynamic environment.

Similar to the aforementioned different scheduler

properties, the scheduling process can be further considered

as a family of problems with respect to different job models.

M
5

M
4

M
3

M
2

M
1

T

J
3

J
1

J
5

J
4

J
2

Fig. 5 A Gantt chart for Job Scheduling process

These job models directly affect the scheduling policies,

which are inspired by the way the systems are managed and

how the parallel applications are written [18]. In such a

model, job flexibility is an advanced partitioning method

supported by application (i.e., rigid, moldable, evolving, and

malleable job flexibility). A number of processor assigned to

a job is specified either external to scheduler called rigid job

or by system scheduler categorized as a

moldable/evolving/malleable job (wherein all categories, the

number of processor may change throughout job execution).

Another model for schedulers is to support different level of

preemption, such as preemption and non-preemption. In

preemption level, the tasks or entire job can be preempted

and migrated during the job execution (i.e., Gang

scheduling). While in the non-preemption scheduling, the

processors will be dedicated to the job throughout their

execution after allocation. Preemption method may have

great advantage in terms of system performance

improvement, but it also possesses associated overheads,

such as cost of memory due to migration and preemption

[18]. Therefore, we consider non-preemptive scheduling

process in our experiments.

Considering the above scheduler properties, we simulate

thirteen different scheduling policies. All of these policies

are described below.

FCFS is a simple and static job scheduling policy, where

a job is served on arrival basis. In this policy, a job can

create long delay for next jobs whenever ready processor

does not meet requirement of the job. LJF and SJF, both

scheduling policies update the batch of jobs (i.e., meta-task)

in decreasing and increasing order in terms of job’s size (i.e.,

job width), respectively. While MinET and MaxET, both

perform the same operation in decreasing and increasing

order in terms of job’s length, respectively [17]. FF is an

additional technique to enhance capability of the above five

policies. FF policy finds a job in shared ordered queue list

that can be fit on first idle resources in such a way the

resources can be utilized.

A backfilling technique [19], [20] makes resource

reservations for jobs, then backfills the jobs only if next jobs

(i.e., Short jobs) do not violate time reserved for previous

jobs. There are two basic backfilling techniques: (a)

aggressive and (b) conservative. The aggressive technique

makes a reservation only for first job, while second

backfilling technique makes reservations for all jobs in the

shared queue. The aggressive backfilling (known EAZY)

was developed for IBM SP1 parallel supercomputer, which

is based on FCFS scheduling policy [19], [20]. We used

aggressive backfilling technique because its performance

superior to conservative technique [20].
In K-reserved based policy, a waiting request has a

counter containing K number of times that it has been
overtaken by subsequent requests [21]. K-reserved based
policy works likely aggressive backfilling technique with
difference only K-reserved based policy backfill only K
numbers of jobs, while aggressive technique does not have

any number of jobs limit to backfill the jobs. Window-K
policy enhances the FCFS policy for a window of
consecutive jobs. The window starts with the oldest waiting
job and contain up to K jobs that have arrived successively
[21]. We set the K values to 5 and 10 in our experiments for
K-reserved based policy and Window-K policy, respectively.

B. Simulation setup

For the workloads simulation, we used a custom Java-
based discrete event simulator. Java provides full advantage
of Object-Oriented Programming (OOP) technique [22]. A
typical object-oriented software system implementation is
centered on dynamic creation, manipulation, storing, and
releasing of objects [23], [24]. The Java environment setup
also allows database connectivity, where we stored all the
datasets. We simulated all of the policies several times to get
accurate result for the experiments. We create event-based
setup, in which scheduler policies (Java programs) invokes
after every 10 seconds interval (i.e., event). For approaching
the real setup, in iteration the interval is incremented with
job submission timestamp, which updates the queue to
collect the meta-task.

V. ANALYZING AND COMPARING THE RESULTS

In this section, we analyze all of the considered
scheduling policies. We evaluate their performance by
measuring four metrics: (a) mean queue-time, (b) mean
response-time, (c) mean slowdown, and (d) slowdown ratio.
These metrics answer to our two major concerns, i.e., in the
first order concern, service providers always care about the
cost (mean response-time) and customers care about the
slowdown ratio. The queue-time is our second order concern,
which can be used to explain the mean response-time and
slowdown ratio. An elapsed time from (when a job arrives)
to (when job assigns to nodes for execution) is a job’s queue-
time, and an elapsed time from (when a job arrives) to (when
job completes execution) is a job’s response-time [29].
Equation 1 and 2 can be used to calculate the mean response-
time and queue-time of the entire workload.

∑ ()

 , (1)

∑ ()

 . (2)

Another metrics, Mean slowdown is a normalized time of

each job (i.e., job completion time divided by job running

time), and slowdown ratio exhibits a normalized time of

mean response-time [32] derived in Equation 3.

 ()

 ()
 , (3)

where Time (mean_response) and Time (mean_execution)
indicate mean response-time and mean running time of the
entire workload. Suppose, a mean response-time of a set of
jobs was 10 hours and their mean execution-time on nodes
was 5 hours, then slowdown ratio will be 2 hours. Slowdown
ratio is perfect and easy metric for measuring performance of
the scheduling policy for the entire workload [29].

(a) (b)

Summary For Queue Time

(c)
Summary For Response Time

(d)
(e) (f)

Fig. 6 Comparison results of all policies with overall workloads: (a) Mean queue-time, (b) Mean response-time, (c) Box-Plot for queue-time of all jobs, (d)

Box-plot for response-time of all jobs, and (f) Mean slowdown.

Fig. 6 shows the results for the above performance
measurement metrics for the entire workload: (a) mean
queue-time, (b) mean response-time, (c) queue time, and (d)
response time for all jobs, (e) mean slowdown, and (f)
slowdown ratio. We create best order of the scheduling
policies for showing the results in which all figures are
depicted.

We further compare the performance measurement
metrics in terms of job size correlations. We create four job
observations based on job categories to investigate, how job
characteristics affect the scheduling accuracy. Table IV
shows their classification, such as short and narrow (SN),
long and narrow (LN), short and wide (SW), and long and
wide (LW) jobs. The above four job observations are defined
below with their results being shown in Fig. 7, Fig. 8, Fig. 9,
and Fig. 10.

 (Ob.1)

 (Ob.2)

 (Ob.3)

 (Ob.4)

TABLE IV. OBSERVATION TABLE FOR ENTIRE WORKLOADS (JOB’S

BREAKDOWNS FOR CORRELATION BETWEEN JOB’S WIDTH AND JOB’S

LENGTH)

Job size
Short (S) Long (L)

Total
<= 1 Hr > 1 Hr

Narrow (N) 1 CPU 36.88 42.39 79.27

Wide (W) > 1 CPU 9.70 11.03 20.73

Total 46.58 53.42 100.00

A. Discussion

Recalling the workload characterization in Section III,

we explored the job characteristics before scheduling

process. The important job characteristics are: (a) The

maximum percent of total jobs requesting single CPU for

execution and (b) percentage of jobs requesting even number

of CPUs.

Another remarks in terms of job running time is that

around half of the total jobs execute within an hour (Short

jobs), while the half of the jobs require more than an hour

(Long jobs). Moreover, jobs arrival rate did not follow a

uniform trend. The above findings exhibit the workload

heterogeneity that may affect various services offered by the

large-scale parallel system. Therefore, it is essential to

compare and analyze different scheduling policies.

Fig. 7 Comparison results of all policies with overall workloads in first observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean

slowdown

 (a)

(b) (c)

(a)

(b)

(c)

 Fig. 8 Comparison results of all policies with overall workloads in second observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean
slowdown

(a)

(b)

(c)

Fig. 9 Comparison results of all policies with overall workloads in third observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean

slowdown

(a)

(b)

(c)

Fig. 10 Comparison results of all policies with overall workloads in fourth observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean

slowdown

Various job-scheduling policies are studied in this paper

for large-scale parallel computational system. Some job

scheduling policies produce results with overheads.

However, each policy possess various characteristics, such as

FCFS produces better results with respect to fairness, but

does not support resource fragmentation. If a job demands a

large number of CPUs for execution and at that time period

system cannot serve the job due to insufficient CPUs, then

the job waits in queue and blocks next job even the next job

demands less CPUs or small execution time than the first

job. In consequent, insufficient CPUs for the first job create

an idle space until enough CPUs become idle, and

consequently, increase the job queue time as well as the

response time.

The results of FCFS policy in all of the figures in the

previous section exhibit unsatisfied results in terms of job

queue time and response time metrics. A solution of the

processors fragmentation problem is introduced in

backfilling technique (i.e., conservative and aggressive [19],

[20]) with addition to maintain the fairness situation.

However, with the specific job characteristics, other job

scheduling policies become superior to FCFS. For instance,

with respect to the job size (i.e., job’s width), LJF produce

better result for Wide jobs, while SJF exhibits better results

to dispatch Narrow jobs. Similarly, according to job running

time (i.e., job’s length), MaxET and MinET policies are well

suited for Long jobs and Short jobs, respectively.

The results in the Section V for comparing the policies

can be well explained in three different classes. These classes

distinguish the scheduling policies into three different sets of

policies, such as Class-I, Class-II, and Class-III. The sets of

the scheduling policies are explained below.

Class-I includes four policies: MinET, SJF, and both policies

with FF technique. In the Class-II, FF technique with FCFS,

LJF, and MaxET, aggressive backfilling (EAZY), and K-

reserved based (Max_Pri) policies are included. Finally,

Class-III comprises four policies: FCFS, LJF, MaxET, and

Window-K policies.

We found that the policies in Class-I produced better

results as compared to the policies in Class-II and Class-III.

The policies in Class-II are superior to the policies in Class-

III.

The major reason for the SJF policy being superior to

other policies in all the figures is a due to a large number of

Narrow jobs that require single CPU. Alternatively, for the

MinET and MaxET policies, we have already highlighted

that (a) MinET and MaxET produce result with respect to

user’ estimated running time, and (b) the job length

characterized in almost same percent of Long jobs as well as

Short jobs. Because of the above highlighted factors in the

job length characterization, it can be assumed that MinET

and MaxET policies may produce almost same result. The

results shown in Fig. 6 reveal that MaxET policy is neglected

for producing the same results as MinET produced because

of maximum number of Narrow jobs. Moreover, this reason

is also considered for MinET-FF producing better result.

 Fig. 7 and Fig. 8 present the observation results for

Narrow jobs. The number of jobs in both observations is

36% and 42% percent of the total jobs in overall workload,

respectively. In the first figure, the jobs belong to SN

category, while second figure addressed the results of LN

jobs. Here in both of the figures, the scheduling policies in

the Class-I dominate other classes.

The results for Wide jobs (i.e., SW and LW) are shown

in Fig. 9 and Fig. 10, and their job percentage is 10% and

11%, respectively. In the first figure, the scheduling policies

from both Class-I and Class-II exhibit better results as

compared to the policies in Class-III, while Fig. 10 shows the

results are almost same in all of the classes.

In the above sections, we rigorously discussed the

characterization and analysis of the real data center workload

and several job-scheduling policies. We investigated that

most of the job scheduling policies are affected significantly

by certain workload characteristics.

VI. CONCLUSION

To enhance the performance of the cloud data centers,

job scheduling and resource allocation techniques are needed

to maintain various levels of QoS. We studied a set of job

scheduling policies, and characterized real data center

workload for optimizing system’s performance. A total of

thirteen job scheduling policies were studied to analyze and

compare results. A set of job scheduling policies includes (a)

priority-based policies, (b) tuning policy, (c) backfilling

techniques, and (d) window-based technique. We used mean

queue time, mean response time, mean slowdown, and

slowdown ratio metrics to evaluate the performance of the

job scheduling policies. All of the policies were extensively

simulated and compared using a real data center workload.

The workload exhibited a wide range of job heterogeneity.

We first characterized the workload and unveiled different

job characteristics, such as jobs demand either single CPU or

even number of CPUs for execution, and percent 47% and

53% of total jobs executed within an hour and more than an

hour, respectively. Moreover, we examined the results

through job scheduling implementation. MinET and SJF

when combined with FF technique exhibit better results as

compared to the other policies.

Our analysis revealed that a single policy is not

sufficient for resource management in parallel computational

environments. Such environments need to implement

dynamic and adaptive scheduling policy. In future work, we

will propose the configuration-based policy to balance the

scheduling policies for non-uniform workloads and for

power consumptions.

ACKNOWLEDGMENTS

The work is funded in part by the grant of the National
Natural Science Foundation of China (No. 61202417),
the public technology service platform for Cloud computing
inspection, detection and application standardization, the
implementation and technical service of security guard

system for Cloud computing, and the national development
and reform commission PRC.

Aftab Ahmed Chandio’s work was partly supported for
his PhD studies in Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen,
China. Samee U. Khan's work was partly supported by
the Young International Scientist Fellowship of the Chinese
Academy of Sciences, (Grant No. 2011Y2GA01).

REFERENCES

[1] Iosup.A., Ostermann.S., Yigitbasi.M.N., Prodan.R., Fahringer. T.,

Epema. D.H.J., “Performance Analysis of Cloud Computing Services
Many-Task s Scientific Computing”, IEEE Transactions on Parallel

and Distributed Systems, Vol. 22, Issue: 6 , 2011 , pp. 931 – 945.

[2] Xu, C. Z., Rao, J., and Bu, X. “URL: A unified reinforcement
learning approach for autonomic cloud management”. Journal of

Parallel and Distributed Computing, 72(2), 2012, pp. 95-105.

[3] Wei T., Dongxu R., Zhiling L., Narayan D., "Adaptive Metric-Aware
Job Scheduling for Production Supercomputers," 2012 41st
International Conference on Parallel Processing Workshops,
(ICPPW’12) pp. 107-115, 2012

[4] Khan S.U., "A Self-adaptive Weighted Sum Technique for the Joint
Optimization of Performance and Power Consumption in Data
Centers," in 22nd International Conference on Parallel and
Distributed Computing and Communication Systems (PDCCS),
Louisville, KY, USA, September 2009, pp. 13-18.

[5] Khan S.U., C. Ardil, "A Weighted Sum Technique for the Joint
Optimization of Performance and Power Consumption in Data
Centers," International Journal of Electrical, Computer, and Systems
Engineering, vol. 3, no. 1, pp. 35-40, 2009.

[6] Khan S.U., Ahmad, I., "Non-cooperative, semi-cooperative, and
cooperative games-based grid resource allocation," Parallel and
Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International , vol., no., pp.10 pp., 25-29 April 2006

[7] Khan S.U., "A Goal Programming Approach for the Joint
Optimization of Energy Consumption and Response Time in
Computational Grids," in 28th IEEE International Performance
Computing and Communications Conference (IPCCC), Phoenix, AZ,
USA, December 2009, pp. 410-417.

[8] Tracy D. Braun, et. al., 2001. A comparison of eleven static heuristics

for mapping a class of independent tasks onto heterogeneous
distributed computing systems. J. Parallel Distrib. Comput. 61, 6

(June 2001), 810-837

[9] Arndt, O., et al., A comparative study of online scheduling algorithms
for networks of workstations. Cluster Computing, 2000. 3(2): p. 95-

112

[10] Baraglia R., et al,. “A multi-criteria job scheduling framework for
large computing farms”, Journal of Computer and System Sciences,

ELSEVIER, 79, pp. 230–244 , 2013.
[11] Feitelson D.G., Tsafrir D., and Krakov D., “Experience with the

Parallel Workloads Archive”. Technical Report 2012-6, School of

Computer Science and Engineering, The Hebrew University of
Jerusalem, April 2012.

[12] Feitelson. D.G., “Workload modeling for performance evaluation”.

Workshop on Job Scheduling Strategies for Parallel Processing ,

Lecture Notes in Computer Science, 2459:114–141, 2002.

[13] Steven H., David S., and Timothy O', Donnell. “Analysis of the Early

Workload on the Cornell Theory Center IBM Sp2”, ACM
SIGMETRICS Conference on Measurement and Modeling of

Computer System, May 1996. Poster.

[14] Steven H., “Workload Evolution on the Cornell Theory Center IBM
SP2”. Workshop on Job Scheduling Strategies for Parallel

Processing (IPPS '96), Springer-Verlag, London, UK, UK, 27-40.

(1996)

[15] Srinivasan S., Kettimuthu R., Subramani V., and Sadayappan P.,

“Selective Reservation Strategies for Backfill Job
Scheduling”, Workshop on Job Scheduling Strategies for Parallel

Processing , Lecture Notes in Computer Science, pp. 55-71, July

2002.
[16] Asanovic K., et al. “The Landscape of Parallel Computing Research:

A View from Berkeley.” Technical Report Technical Report No.

UCB/EECS-2006-183, EECS Department, University of California,
Berkeley, 2006.

[17] Maheswarana M., Ali S., Siegel H.J, Hensgen D., Freund R.F,

“Dynamic Mapping of a Class of Independent Tasks onto
Heterogeneous Computing Systems”, Journal of Parallel and

Distributed Computing, Vol. 59, Issue 2, Nov. 1999, Pages 107–131

[18] Feitelson D.G, et al.,”Theory and Practice in Parallel Job
Scheduling”. In Proceedings of the Job Scheduling Strategies for

Parallel Processing (IPPS '97),

[19] Litka D.A., "The ANLIIBM SP Scheduling System," Workshop on
Job Scheduling Strategies for Parallel Processing, Lecture Notes in

Computer Science, Springer, vol. 945, 1995, pp. 295-303,

[20] Mu’alem A.W., Feitelson D.G.. “Utilization, Predictability,

Workloads, and User Runtime Estimates in Scheduling the IBM SP2

with Backfilling”. IEEE Transactions on Parallel and Distributed

Systems, Vol. 12(6), 2001, pp. 529-543.
[21] Ababneh I. and Bani-Mohammad S., “A new window-based job

scheduling scheme for 2D mesh multicomputers”. ELSEVIER,

Simulation Modelling Practice and Theory, 19(1):482–493, 2011.
[22] Horton I., “Ivor Horton's Beginning Java 2, JDK 5 Edition”, Text

Book, December 2004
[23] Saleh K., “Object model in Java: elements and application”,

Information and Software Technology ,Vol. 41, Issue 4, 15 March

1999, pp.235–241
[24] Chandio, A. A., Zhu, D., & Sodhro, A. H.. “Integration of Inter-

Connectivity of Information System (i3) using Web Services”.

In Proceedings of the International MultiConference of Engineers and
Computer Scientists (IMECS), Lecture Notes in Engineering and

Computer Science, Vol. 2195, pp. 651-655 (2012)

[25] Lublin, U., Feitelson, D. “The Workload on Parallel Supercomputers:
Modeling the Characteristics of Rigid Jobs”. J. Parallel and

Distributed Computing, Vol. 63(11), 2003, pp.1105-1122.

[26] Li, H., Groep, D. L., Wolters, L. “Workload characteristics of a
multi-cluster supercomputer”. Workshop on Job Scheduling

Strategies for Parallel Processing, Lecture Notes in Computer

Science, vol 3277, 176-193 (2004).
[27] Chapin, S., Cirne, W., Feitelson, D. G., Jones, P., Leutenegger, S.,

Schwiegelshohn, U., Smith, W., Talby, D. “Benchmarks and

Standards for the Evaluation of Parallel Job Schedulers”. Workshop
on Job Scheduling Strategies for Parallel Processing, Lect. Notes

Comput. Sci. vol. 1659, 1999, pp. 66-89

[28] Parallel Workload Archive.
http://www.cs.huji.ac.il/labs/parallel/workload/

[29] Lo, M., Mache, J., Windisch, K.J.”A Comparative Study of Real

Workload Traces and Synthetic Workload Models for Parallel Job
Scheduling”. Workshop on Job Scheduling Strategies for Parallel

Processing, Lecture Notes In Computer Science; Vol. 1459, 1998, pp

25-46.
[30] Lublin, U., Feitelson, D. “The Workload on Parallel Supercomputers:

Modeling the Characteristics of Rigid Jobs.” J. Parallel and

Distributed Computing, Vol. 63(11), 2003, pp.1105-1122.

[31] Chiang S.-H. and Vernon M. K.. “Characteristics of a large shared

memory production workload”, Workshop on Job Scheduling

Strategies for Parallel Processing, Lecture Notes in
ComputerScience, 2221: 159–187, 2001

[32] Downey A.B., “A parallel workload model and its implications for

processor allocation”, 6th International Symposium of High
Performance Distributed Computing, 1997, pp-112-123.

[33] Wang, L., Khan S.U, and Dayal J., “Thermal aware workload

placement with task-temperature profiles in a data center”. The
Journal of Supercomputing, 61(3): p. 780-803, 2012

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5756300
http://www.cs.huji.ac.il/~feit/papers/PWA12TR.pdf
http://www.cs.huji.ac.il/~feit/papers/PWA12TR.pdf
http://link.springer.com/bookseries/558
http://www.sciencedirect.com/science/article/pii/S0743731599915812
http://www.sciencedirect.com/science/article/pii/S0743731599915812
http://www.sciencedirect.com/science/article/pii/S0743731599915812
http://www.sciencedirect.com/science/article/pii/S0743731599915812
http://www.sciencedirect.com/science/article/pii/S0743731599915812
http://www.sciencedirect.com/science/article/pii/S0743731599915812
http://www.sciencedirect.com/science/journal/07437315
http://www.sciencedirect.com/science/journal/07437315
http://www.sciencedirect.com/science/journal/07437315/59/2
http://www.sciencedirect.com/science/article/pii/S0950584999000026
http://www.sciencedirect.com/science/journal/09505849
http://www.sciencedirect.com/science/journal/09505849/41/4
http://www.cs.huji.ac.il/labs/parallel/workload/

