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memory the GPU has a size of 2GB (or 2.5GB). Therefore, we 

can derive the maximum number of n in theory as: 

2n
3
+6n

2
+6n ≤ 2

31 
(or 2.5×2

30
), which amounts to 646 (or 

695). In the experiments, the maximum value of n was set to 

512 because: (a) 512 is the maximum number of the power of 

2 that is below 646 (or 695) and (b) a minimum size of GPU 

memory should be left for the system’s uses. 

In all of the experiments, the deviation amongst the factors 

decomposed from the two versions of the PARAFAC is 

ignorable. The PARAFAC variants were executed for thirty 

times on each tensor. The averaged execution times for both 

initialization and PARAFAC model execution are reported in 

Fig. 7. Three trend lines are provided for the DTLD of the SC-

PARAFAC, and both parts of the G-PARAFAC (on GTX 

680), respectively. 

The range of the total execution time for the SC-PARAFAC 

is [~0.137s, ~1,292s], which corresponds to the handling of 

the smallest tensor and the largest tensor, respectively. The 

time values become ~0.155s and ~3.5s using the G-

PARAFAC method (on GTX 680) that indicates a dramatic 

performance improvement by >360 times. Since the GPU’s 

computing power has not been fully exploited when dealing 

with a tensor in a relatively small size, it is reasonable for G-

PARAFAC that executes a bit slower than SC-PARAFAC 

does at the beginning.  

The SC-PARAFAC executes (1292/0.137−1)≈9430 times 

longer when the data scales to 512 times (8 times in all of the 

dimensions). In contrast, the G-PARAFAC only executes 

(3.5/0.155-1)≈22 longer under the same senario. The results 

indicate that the SC-PARAFAC is very sensitive to data 

scaling, which is not the case for the G-PARAFAC method. 

For the SC-PARAFAC, the ratio of the execution time of 

the DTLD versus the PARAFAC model ranges between 

(114.1/23.2 ≈ 5) and (1260689.4/31031.6 ≈ 40) for the 

smallest and largest tensors. For the G-PARAFAC (on GTX 

680) method, the two enumerations become (148.5/6.7=22.2) 

and (2102.7/1443.1≈102.7). With the data scaling to 512 

times, DTLD in SC-PARAFAC executes (1260689.4/114.1−1

≈11048) times longer whereas DTLD in G-PARAFAC only 

executes for (2102.7/148.5−1≈13) times longer.  The results 

indicate a significant improvement of DTLD’s scalability in 

G-PARAFAC. 

B. Benchmark of Routines 

Routines for the calculation of the Khatri-Rao product: 

C(512×512, 512)=A(512, 512) ⊙ B(512, 512) and 

multiplication of two random matrices: C(512, 512)=A(512, 

512)×B(512, 512) were benchmarked in terms of (a) the 

runtime efficiency and (b) the throughput. Thirteen runs had 

been performed with results presented in this paper as the 

averaged values. 

We measured the performance of the SC-PARAFAC, G-

PARAFAC, and CUBLAS (v4.2) on the workstation and the 

Tesla C2050 (memory bandwidth 144.00GB/s) respectively. 

For comparison purpose, we have also executed the library of 

Parallel Linear Algebra for Scalable Multi-core Architectures 

(PLASMA, v2.4.0 for Windows x86_64) on the four cores of 

the workstation [40]. Note that the PLASMA and CUBLAS 

only apply in the matrix multiplications.  

Table II presents the runtime efficiency of the SC-

PARAFAC and G-PARAFAC methods for the calculation of 

the Khatri-Rao product. 

 
(A) Breakdown of execution times with SC-PARAFAC 

 
(B) Breakdown of execution times with G-PARAFAC on GTX 680 

 
(C) Breakdown of execution times with G-PARAFAC on C2050 

Fig. 7. The runtime performance (and trends) of SC-PARAFAC and G-

PARAFAC using scaling data. 
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Table III presents the runtime efficiency of SC-PARAFAC, 

PLASMA, CUBLAS and G-PARAFAC for matrix 

multiplication. 

. 

The NVIDIA Compute Visual Profiler was used to measure 

the occupancy and the global memory throughput [41] for the 

GPGPU-enabled implementations. For the SC-PARAFAC 

method, the throughput for accessing memory on the host was 

calculated. The results are presented in Table IV and Table V. 

 

 

VI. EPILEPSY ECOG DATA ANALYSIS WITH G-PARAFAC 

Inspired by the success of analyzing EEG tensors with the 

PARAFAC method, this study examined the effectiveness of 

the G-PARAFAC method in dealing with an epilepsy ECoG 

dataset. The objectives include: (a) to measure the epilepsy 

ictal state and verify results with the clinical diagnosis using 

magnetic resonance imaging (MRI) or 

magnetoencephalography (MEG), and (b) to examine the 

potential of the G-PARAFAC method to process many-

channels of neural data. 

A. Subjects and  ECoG recordings 

Four epilepsy patients aged 18–42 years with a long history of 

intractable epilepsy were recruited after taking consent from 

the local ethics committee. Prior to their respective surgery, 

the patients underwent surgical implantation of subdural 

electrode grids for locating their seizure related regions and to 

perform functional mapping of motor function. The sampling 

rate utilized was 256Hz, and the number of electrodes was 24. 

We studied the ECoG recordings of 13 seizures. Ictal ECoG 

recordings were captured with subdural electrodes in the 

epilepsy monitoring units of the Peking University First 

Hospital, Beijing, China. Subdural ECoG recordings with 

reference to the common average were used for computational 

analyses. Table VI summarizes the specifications of the ECoG 

recordings including the number of electrodes and the duration 

of the ictal phase corresponding to each of the seizures.  

B. Epilepsy Tensor Construction and Processing  

We developed a model for processing ECoG tensors that 

executes in the following steps:  

1) The multi-channel ECoG data were initially formed by 

the time series in connection with the multiple electrodes 

(e.g., 24). Noises were removed using a band-pass filter 

(1-100Hz). A sliding-time window (epoch, e.g., a 

sampling time of 3.90625s or 1000 data elements) was 

applied to the data, and the overlap (e.g., 250 data 

elements) of two consecutive windows was set. 

Thereafter, the total number of time windows required to 

cover the whole ECoG data was obtained. Each of the 

epochs existed as a matrix (e.g., 1000×24). 

2) The Morlet continuous wavelet (Morlet et al. [22]) was 

applied onto each epoch per electrode to identify the 

available frequency component at each of the time series. 

We characterized the activities of the ECoG in a wide 

frequency band (1-100Hz, with 100 scales in total). A 

three-way tensor (time-space/channel-frequency, e.g., 

1000×24×100) was then constructed corresponding to 

each of the epoches.  

3) The G-PARAFAC method was performed on the ECoG 

tensors to extract the components in time, frequency, and 

channel for each of the tensors [12].  

4) The time information was eventually merged. The value 

of the overlap between two consecutive tensors was 

calculated by averaging the values with the two tensors. 

The frequency corresponding to the maximum weight was 

stored for each of the tensors. The channel results for all 

of the epochs formed the topography of the corresponding 

sources. 

C. Results 

All of the seizures shown in Table VI were analyzed with 

the proposed model. Fig. 8 highlights the results of analyzing 

TABLE V 
THROUGHPUT: SC-PARAFAC, CUBLAS, AND G-PARAFAC FOR MATRIX 

MULTIPLICATION 

Implementations Occupancy  Throughput Peak Throughput 

SC-PARAFAC N/A 0.73GB/s N/A 

CUBLAS 0.30 22.68GB/s 144.00GB/s 

G-PARAFAC 0.48 89.68GB/s 144.00GB/s 

 

TABLE IV 

THROUGHPUT: SC-PARAFAC VS. G-PARAFAC FOR CALCULATION OF 

KHATRI-RAO PRODUCT 

Implementations Occupancy  Throughput Peak Throughput 

SC-PARAFAC N/A 0.82GB/s N/A 

G-PARAFAC 0.97 100.92GB/s 144.00GB/s 

 

TABLE III 

RUNTIME EFFICIENCY: OF SC-PARAFAC, PLASMA, CUBLAS AND G-
PARAFAC FOR MATRIX MULTIPLICATION 

Implementations Runtime Efficiency 

SC-PARAFAC 0.17Gflop/s 

PLASMA 3.82Gflop/s 

CUBLAS 300.5Gflop/s 

G-PARAFAC 320.0Gflop/s 

 

TABLE II 

RUNTIME EFFICIENCY: SC-PARAFAC AND G-PARAFAC FOR KHATRI-RAO 

PRODUCT 

Implementations Runtime Efficiency 

SC-PARAFAC 0.21Gflop/s 

G-PARAFAC 18.25Gflop/s 

 

TABLE VI 

DATASET OF MULTI-CHANNEL ICTAL ECOG 

Patient 

ID 
Age 

(Year) 
 Focal Zone (MRI, MEG 

diagnosis or no measure) 
Seizure 

ID 

Duration of 

ictal ECoG (ms) 

1 42 RT(no);LCA(MRI) 1 297-352 
1 42 RT(no);LCA(MRI) 2 294-367 

1 42 RT(no);LCA(MRI) 3 307-370 

1 42 RT(no);LCA(MRI) 4 312-455 
1 42 RT(no);LCA(MRI) 5 307-340 

2 25 LT(MEG);LCA(MRI) 6 255-376 

2 25 LT(MEG);LCA(MRI) 7 311-476 
2 25 LT(MEG);LCA(MRI) 8 302-437 

2 25 LT(MEG);LCA(MRI) 9 297-437 

3 27 LTP(MEG);LTB(MEG) 10 352-389 
3 27 LTP(MEG);LTB(MEG) 11 317-356 

4 18 LT(MEG);LCA(MEG) 12 294-494 

4 18 RT(no);LCA(MRI) 13 270-378 

LT: left temporal, RT: right temporal, LCA: left hippocampus, RCA: right 

hippocampus, LTP: left temporal pole, LTB: left temporal bottom. 
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Seizure 7 of Patient 2 including the signatures of the sources 

in time, frequency, and space.  

Fig. 8(A) illustrates the raw 24-channel ECoG of 600s 

spanning a full ictal event, which covers four phases identified 

by clinical diagnosis: pre-ictal (P1, 0-181s), onset (P2, 182-

310s), ictal (P3, 311-476s), and post-ictal (P4, 477-600s). The 

time evolution, as illustrated in Fig. 8(B), shows how the 

intensity of the neural activities varied, exhibiting higher 

coefficients (P3) corresponding to ictal phase than in other 

phases. The frequency signatures of 6-50Hz as reported in Fig. 

8(C) have higher coefficients in the ictal phase in contrast to 

those of below 6Hz having higher coefficients in the other 

phases. Fig. 8(D) indicates that the channels in the left 

hippocampus and the left temporal bottom areas have higher 

coefficients in the phases of pre-ictal and onset. The 

coefficients distribution of all of the channels are confusing in 

post-ictal due to synchronization discharge.  From onset to 

ictal, the number of the activated channels first gradually 

increases and then decreases at the end of the ictal. The neural 

activities were propagated from the left hippocampus and the 

left temporal bottom areas, to the right hippocampus and the 

right temporal bottom areas.  

Through the analyses on the whole ECoG dataset, the 

model can effectively indicate the epilepsy states with clear 

characteristics of seizures provided. The observations were 

well correlated with clinical practice:  

1) The time signature consists of four phases. In pre-ictal, 

the weight remains low and has some fluctuations. In 

onset, the weight becomes even lower and remains more 

stable. The weight increases sharply when entering the 

ictal phase and remains high till the start of post-ictal. In 

the post-ictal phase, the weight remains low and is 

significantly differerent from that in ictal.  

2) The frequency signature explicitly denotes the ictal state. 

The components of the higher and stable frequencies in 

comparison with that of the other states can be observed. 

In pre-ictal, it exhibits low frequencies for most of the 

time and higher frequencies occasionally burst out. In the 

post-ictal phase, components are stable and low 

frequencies can dominate.  

3) In the pre-ictal phase, a few channels exhibit significantly 

higher continuous discharge than the rest of the channels. 

These channels can be identified as the epileptic focal 

zones, referring to the clinical diagnosis.  In the ictal state, 

a small fraction of intensive discharge occurs to a wide 

range of channels. In the post-ictal state, unstable 

discharge may occur to some channels but in a low 

intensity. 

To have an in-depth investigation of the G-PARAFAC’s 

capability of analyzing ECoG in real-time and to find out how 

much the approach may adapt to the needs in clinical practice, 

another set of experiments was performed. We fixed the size 

of epoch to 1000 (a length of 3.90625s) and the number of 

frequency scales to 1000. Thereafter, we increased the number 

of channels from 100 to 1000. Fig. 9 presents the execution 

times of the G-PARAFAC and the SC-PARAFAC methods. 

The results indicate that (1) the G-PARAFAC performs 

significantly better comparing to the SC-PARAFAC and (2) it 

can support real-time processing of ECoG in more than 1000 

channels. 
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Fig. 8. A case of using G-PARAFAC to analyze an epilepsy ECoG data, 

which extracts the time, frequency, and space (location) signatures. (A) The 

raw epilepsy ECoG data from pre-ictal to post-ictal, seizure onset emerges at 

the duration of 300-345s; (B) Time signature corresponding to a seizure; (C) 

Frequency signature corresponding to a seizure; (D) Location signature 

corresponding to a seizure. 
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VII. CONCLUSIONS AND FUTURE WORK 

To cater for the needs of neuroscience research and practice 

to perform multi-way analysis of neural data, this study 

explored an approach that can: (a) accurately capture the 

unique features amongst the multiple modes of neural data and 

(b) enable data-intensive applications with speed and 

scalability. A massively parallel PARAFAC method was 

developed to perform multi-way data analysis with the support 

of GPGPU on contemporary GPUs. The proposed approach 

formed the basis of a model for three-way analysis of epilepsy 

ECoG data streams.  

The original PARAFAC method has very fine-grained 

parallelism with all of its major components, especially the 

extensive and complicated matrix operations, such as the 

Khatri-Rao product and the Kronecker product. A GPGPU-

aided PARAFAC (G-PARAFAC) method was designed with 

major components of PARAFAC properly parallelized at the 

lowest level.  

This study enabled transformation of the complex algorithm 

for the Kronecker product into a simpler approach using basic 

matrix operations. The complicated SVD algorithm also 

proved replaceable with its far more efficient counterpart, 

NIPALS. The Tucker3 model and the DTLD method were 

massively parallelized to benefit from the multi-core platform. 

The design for the parallel matrix operation attempts to avoid 

the expensive access to the global memory. All of the 

intermediate data generated by a G-PARAFAC procedure 

were created and operated in the device memory without 

incurring excessive overhead for host-to-device 

communication. 

Experimental studies were performed to evaluate the 

performance of the G-PARAFAC method with a fully 

optimized serial PARAFAC implementation (SC-PARAFAC) 

on a CPU platform, using three-way tensors of different scales 

in three dimensions. The results indicated that the G-

PARAFAC method dramatically improves the runtime 

performance comparing to the SC-PARAFAC by hundreds of 

times. With the test data scaling by 512 times in size, the 

execution time of the SC-PARAFAC increased by more than 

9,430 times. The G-PARAFAC exhibited scalability that was 

far superior to that of the SC-PARAFAC.  

This study also developed a model on G-PARAFAC for 

analysis of epilepsy ECoG tensors. The model had been used 

to process the ECoG data of 13 seizures from 4 patients. The 

results indicated that the model was effective in measurement 

of epilepsy ictal state. The time evolutions were well 

correlated with clinical observations. The frequency signature 

was stable and low in the pre-ictal duration. The frequency 

components of 6-50Hz had higher coefficients in the ictal 

phase and the frequency components below 6Hz having higher 

coefficients in other phases. Seizure localization was achieved 

in the pre-ictal duration by referring to the spatial signature. 

Moreover, the model supported real-time analysis of ECoG in 

more than one thousand channels using inexpensive 

cyberinfrastructure. The experimental studies indicate that the 

G-PARAFAC method is promising and it may pave the way to 

real-time applications in clinical practice. 

For future work, we plan to incorporate the extended 

PARAFAC theory to handle exascale tensors. We are 

particularly interested in (1) a more flexible scheme to 

accommodate both coarse-grained and fine-grained 

parallelism and (2) harnessing the computing resources of 

multiple GPUs and CPUs crossing compute nodes. 
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