
Virtual Network Reconfiguration in Optical Substrate Networks
F. Gu

1
, M. Peng

2
, S. Khan

3
, A. Rayes

4
, N. Ghani

1

1University of New Mexico, 2Wuhan University, 3North Dakota State University, 4Cisco Systems Inc

Abstract: This paper studies virtual network service provisioning over substrate optical

networks and presents a novel reconfiguration scheme to improve efficiency. Simulation

results show lower blocking and increased revenues as compared to existing strategies.
OCIS codes: (060.4250) Networks; (060.4258) Networks, topology

I. Introduction

The continued evolution of user applications, particularly cloud-computing, is driving the need to

coordinate geographically-dispersed resources. As a result, network virtualization services have become a

key requirement as they allow operators to provision dedicated virtual networks (VN) over base optical

networking substrates and data-centers. Now a typical user VN request consists of an arbitrary set of VN

nodes interconnected by an arbitrary set of VN links, i.e., each VN node requests a certain amount of

resources (storage, computing) and each VN link requests a certain amount of bandwidth connectivity

between its endpoint VN nodes. Hence operators must implement appropriate VN mapping algorithms to

assign VN nodes to distinct physical substrate nodes and VN links to underlying (optical) connections. As

this mapping problem is NP-hard [2], most existing schemes have proposed heuristics-based strategies to

achieve various objectives, e.g., such as revenue maximization or cost reduction [1], [2].

Nevertheless, most VN mapping schemes give high resource fragmentation at the network substrate

layer when user requests arrive/depart in a dynamic manner. Hence further VN reconfiguration strategies

have been proposed to improve resource efficiency. For example, the scheme in [1] periodically migrates

selective VNs based upon overloaded substrate fiber links. Meanwhile [2] periodically checks and re-

computes VN links for active VN requests with longer residual lifetimes. In general, these periodic

strategies are classified as proactive and entail relatively high computational overheads and migration

costs. Hence some others have also proposed reactive VN reconfiguration after setup failures. For example

[3] presents a virtual network reconfiguration (VNR) scheme that migrates a single node (and its associated

VN links) in order to control migration costs, i.e., as opposed to migrating a whole VN topology as in [1].

Simulation findings show good blocking and migration cost reduction with this reactive approach, i.e.,

versus some proactive schemes. However the VNR scheme implements a greedy approach as it only

migrates a minimum number of VN nodes to accept the rejected VN request. As a result this solution may

yield increased congestion at certain bottleneck links, leading to higher blocking/reduced revenues.

To address these concerns, this paper presents an improved VN reconfiguration solution for optical

networks. The scheme uses a reactive approach to perform multiple (batch) reconfigurations and thereby

achieves further improvements in blocking and migration cost. Overall, the paper is organized as follows.

Section II details the VN reconfiguration problem followed by the proposed reconfiguration solution.

Performance results are then presented in Section III along with conclusions and future work directions.

II. Network Model and VN Reconfiguration

A novel VN reconfiguration scheme is now presented. Consider the requisite notation first. The base

optical network substrate is modeled as an undirected graph, Gs=(Vs,Es), where Vs is the set of substrate

nodes and Es is the set of substrate links. Here each substrate node vs Vs has varying amounts of

computing and storage resources, generically given by R(vs). Furthermore, each substrate fiber link es Es

also has a variable amount of available capacity given by B(es). Meanwhile a client VN request is given by

an undirected graph, Gv=(Vv,Ev), where Vv is the set of VN nodes and Ev is the set of VN links. Here each

VN node vv Vv requires r(vv) in nodal resources and each VN link ev Ev requires b(ev) in bandwidth

capacity. Furthermore, a VN mapping requires that a VN node vv be assigned to a specific substrate node vs,

i.e., denoted as <vv,vs>. Likewise, each VN link ev also has two end-points, denoted by the pair (vv, vv’).

Using the above notation, a sample 8-node optical substrate network is shown in Fig. 1a, where the values

over the links (nodes) denote the available bandwidth (nodal resources) levels. A sample 4-node VN

request is also shown in Fig. 1b, and this request can be mapped (embedded) over the physical substrate

topology.

The proposed VN reconfiguration scheme uses a reactive approach and is termed as the multiple VN

node reconfiguration (MVNNR) solution. This algorithm is invoked after failure of a regular VN setup

attempt and tries to migrate a subset of VN nodes (from the set of existing mapped VN requests) to relieve

Figure 1: a) substrate network, b) sample VN request

congestion on overloaded optical substrate links.

The detailed psuedocode listing for this algorithm

is shown in Fig. 2 and starts by grouping all

congested substrate optical links into a congestion

set, S, based upon their relative bandwidth loading

levels, i.e., S={es Es | B(es) αBc}, where Bc is

the full link capacity and α is a relative usage

threshold, 0≤α≤1. Using this set, a ranking metric

is also defined for each VN node q as follows:

 k=A T Eq. (1)

where A is the number of congested links in S used by VN links attached to q, and T is the residual lifetime

of the VN request with node q (i.e., since studies have shown the benefit of incorporating lifetimes [2]).

This cost k is then used to sort all VN nodes (in all active requests) in decreasing order to generate a

candidate migration list, Q (Fig. 2). The MVNNR scheme then loops

through the first R VN nodes in Q and attempts to migrate each (along

with its set of adjacent VN links) in sequence. Namely, a further candidate set of substrate nodes, L, is

generated for each VN node qi Q based upon availability, i.e., if the substrate node is not already mapped

to another VN node in the same request and there are sufficient nodal resources (lines 9-12, Fig. 2). The

algorithm then uses this candidate set to select a new substrate mapping for VN node qi. Consider the

details here.

 Figure 2: MVNNR algorithm Figure 3: MVN sub-algorithm

The psuedocode for substrate node selection is shown in Fig. 3 and is termed as the migrate virtual

node (MVN) sub-algorithm, i.e., called from the main MVNNR algorithm (line 13, Fig. 2). This selection

process basically looks at each substrate node vs L and tries to map all the attached VN links, i.e.,

connections to neighboring VN nodes for the given node qi Q. Note that this computation is done over a

temporary working copy, Gt, of the main substrate graph, Gs. Now if substrate connection paths can be

computed for all VN links here, then the associated substrate node vs is deemed a valid mapping node.

However in order to minimize congestion on substrate optical links, the algorithm also computes a stress

metric, s, for all valid mapping nodes and selects the substrate node with the lowest stress from all nodes in

L, i.e., lines 13-17, Fig. 3. Specifically, this stress value is defined in an analogous manner to [3] as:

 Eq. (2)

where Ba is the average residual bandwidth of substrate paths allocated for all attached VN links for qi and ε

is a small value to avoid division errors. Carefully note that the shortest-path computation step (i.e., line 7,

Fig. 3) can either use fixed (operator-specified) or dynamic link weights in the substrate network graph Gs.

1. Construct congested link set S and VN node migration list

Q containing all VN nodes of all active VN requests

2. For each q Q, compute migration metric k using Eq. (1)
3. Sort VN nodes in Q in decreasing order using k

4. for i = 1 to R

5. Select i-th VN node qi Q (qi belongs to request Gv)

6. n=record of current node/link mapping for <qi, vs>, i.e.,

where vs is allocated to qi

7. Release resource for record n in Gs

8. Set candidate substrate node list L to empty

9. for each vs Vs

10. if (no other VN nodes in Gv mapped to vs)

11. if (R(vs) r(qi))

12. Insert vs to L

13. m=call MVN (qi,Gv,L)

14. if (m!=NULL)

15. Migrate qi according record m, reserve resource for

record m in Gs, return SUCCESS

16. else

1. Given VN node qi in Gv and substrate node list L

2. Initialize smin=+∞, m={}

3. for (each vs L)

4. Create substrate graph Gs copy, denoted by Gt

5. l=SUCCESS

6. for each vv is adjacent to qi in Gv

7. result=compute minimum cost substrate fiber

path p for virtual link (vv, qi) in Gt

8. if(result=FAIL)

9. l=FAIL

10. break

11. else

12. reserve bandwidth for p in Gt

13. if (l=SUCCESS)

14. s=compute stress for <qi,vs> using Eq. (2)

15. if (s <smin)

16. Update smin = s

17. m=record of node/link mapping for <qi, vs>

18. return m

d

b

c

53 85 67

50

72

39 41 38

60

30

40200

420 400

200

260

210300

90

180

50
190

A D

F

GB

C

H

E
a

155

31

9

35

In particular, the latter case can be used to implement load-balancing operation over the substrate network

by assigning link weights as inversely-proportional to available capacity levels. Also note that special data

structures are needed to record the mapping information for a VN node and its attached VN links, i.e., as

per line 6 in MVNNR (Fig. 2) and line 17 in MVN (Fig. 3).

III. Performance Evaluation

The proposed VN reconfiguration scheme is tested using custom-built models in OPNET Modeler
TM

. All
tests are done for a 24-node optical network topology in which substrate nodes have 100 units of generic
resource capacity (computing, storage) and substrate optical links have 10,000 units of bandwidth.
Meanwhile, VN requests are generated by composing randomized graph topologies with 4-7 nodes each
and an average node degree of 2.6. The requested VN node capacities are also uniformly-distributed
between 1-10 units and VN link capacities between 50-1,000 units. Furthermore, VN request holding and
inter-arrival times are exponentially distributed with means µ=600 sec and λ, respectively (and λ varied
according to input load). Here all tests are done for 100,000 VN requests and fixed unity weights are used
for all links in the shortest-path computation phase, i.e., to minimize hop count/resource utilization. Now
the actual input loads are measured by defining a modified Erlang metric that also takes into account VN
request sizes, i.e., specified as a product of the average number of VN links and µ/λ. Finally, the non-
survivable virtual infrastructure mapping (NSVIM) scheme in [4] is used as the base VN mapping
algorithm, and the VNR scheme from [3] is also tested for comparison purposes. Specifically, this latter
algorithm uses a single-stage approach which maps a VN node to a substrate node along with its attached
VN links in the same step/iteration.

Figure 5: Long Time Net RevenueFigure 4: Blocking Rate

0.004

0.04

200 300 400 500 600

B
lo

ck
 i

n
g

R
a

te

Load

Non-R

VNR

MVNNR

650

750

850

950

1050

1150

1250

200 300 400 500 600

N
e

t
R

e
ve

n
u

e
 P

e
r

T
im

e
 U

n
it

Load

Non-R

VNR

MVNNR

Figure 6: Long Time Reconfiguration Cost

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

200 300 400 500 600

M
ig

ra
ti

o
n

 C
o

st
 P

e
r

T
im

e
 U

n
it

Load

VNR

MVNNR

Initial tests are done to measure VN request blocking rates, as shown in Fig. 4 (where the baseline “non-

reconfiguration” NSVIM scheme is labeled as “Non-R”). These overall findings clearly show much-

improved performance with the reconfiguration-based schemes, e.g., up to 88% lower request rejection

rates at low-medium loads. More importantly, the proposed MVNNR scheme also gives 66% lower

blocking than the VNR scheme, validating the benefits of migrating multiple VN nodes. Next, long term

net revenues are plotted in Fig. 5. These findings clearly indicate much higher operator income with the

reconfiguration-based schemes, i.e., 13% more at medium-to-high loads. In addition, the MVNNR scheme

also gives higher net revenues than the VNR scheme (by almost 10%) due to its lower blocking rates.

Finally, Fig. 6 plots the long-term VN reconfiguration costs for the two reconfiguration schemes. Akin to

[3], this value is measured as the total cost of migrating all VN nodes and their attached links, i.e., which is

given by the weighted sum of the number of migrated VN nodes and VN links. As expected, the proposed

MVNNR solution gives higher costs, particularly at heavier loads (up to 34%). Nevertheless, this increase

is notably offset by the increase in revenues, i.e., Fig. 5.

This paper studies VN reconfiguration in optical networks and presents a novel reactive algorithm to

migrate multiple VN nodes to minimize substrate link congestion. Overall, simulation results show much-

improved blocking rates as well as higher net revenues with the proposed scheme (as compared with

existing schemes). Future efforts will look at extending this approach to for survivable VN provisioning.

References

[1] Y. Zhu, M. Ammar, “Algorithms for Assigning Substrate Network Resources to Virtual Network Components,” IEEE INFOCOM 2006,

Barcelona, Spain, April 2006.

[2] M. Yu, Y. Yi, J. Rexford, M. Chiang, “Rethinking Virtual Network Embedding: Substrate Support for Path Splitting and Migration,” ACM

SIGCOMM Computer Communication Review, Vol. 38, No. 2, April 2008, pp. 17-29.

[3] I. Fajjari, N. Aitsaadi, G. Pujolle, H. Zimmermann, “VNR Algorithm: A Greedy Approach for Virtual Networks Reconfigurations,” IEEE

GLOBECOM 2011, Houston, TX, December 2011.
[4] H. Yu, et al, “A Cost Efficient Design of Virtual Infrastructures with Joint Node and Link Mapping,” Journal of Network and Systems

Management, Vol. 20, No. 1, 2012, pp. 97-115.

