Adopting Trust and Assurance as Indicators for the Reassignment of Responsibilities in Multi-Agent Systems

BENJAMIN GÂTEAU¹, MOUSSA OUEDRAOGO¹, CHRISTOPHE FELTUS¹, GUY GUEMKAM¹, GRÉGOIRE DANOTY², MARCIN SEREDYNSKI³, SAMEE U. KHAN⁴, DJAMEL KHADRAOUI¹ and PASCAL BOUVRY²

¹Public Research Centre Henri Tudor, 29 Av. John F. Kennedy, L-1855 Luxembourg
E-mail: surname.name@tudor.lu
²CSC Research Unit, University of Luxembourg, 6 rue Coudenhove Kalergi, L-1359 Luxembourg
E-mail: {gregoire.danoy,pascal.bouvry}@uni.lu
³Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, 6 rue Coudenhove Kalergi, L-1359 Luxembourg
E-mail: marcin.seredynski@uni.lu
⁴NDSU-CIIT Green Computing and Communications Laboratory, Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58108–6050, USA
E-mail: samee.khan@ndsu.edu

Abstract

Multi-agent systems have been widely used in the literature, including for the monitoring of distributed systems. However, one of the unresolved issues in this technology remains in the reassignment of the responsibilities of monitoring agents when some of them become unable to meet their obligations. This paper proposes a new approach for solving this problem based on: (a) the gathering of evidence on whether the agent can or cannot fulfill the tasks it has been assigned and (b) the reassignment of the task to alternative agents using their trust level as a selection parameter. A weather station case study is proposed as an instantiation of the proposed model.

1 Introduction

The adoption of multi-agent systems (MAS) to monitor highly distributed systems has been gaining momentum in the recent years. Such systems have witnessed crucial demand for deployment in diverse application scenarios, such as E-commerce, E-health, network intrusion detection, telematics and transport systems and environmental monitoring (Baig, 2012). The rationale for the aforementioned systems mainly relies on the inherent properties and characteristics that the multi-agent technology offers. An agent is commonly considered as an encapsulated computer system that is situated in some environment and is capable of flexible and autonomous action within the environment to meet the design objectives (Wooldridge, 2002). Since agents control their own behaviour, they may (and in many cases must) cooperate and negotiate with each other in order to achieve the desired goals (Jennings, 1999). The convergence of these agents’ properties and distributed systems behaviour makes the multi-agent architecture an appropriate mechanism for the monitoring of network infrastructure including the security aspects (Wooldridge, 2002).

Efficiently monitoring the network using a MAS imposes that each agent meets its assigned objectives that we will hereafter refer to as responsibilities. In addition, the environment in which the system or network operates can be subject to unpredictable changes. Some agents may then become unable to meet their assigned responsibilities. For instance, hazards or even malicious actions could break communication links between monitoring agents. Alternatively, the agents entrusted with conducting the verifications and measurements may fail to fulfill their
responsibilities due to: (a) erroneous assignment of their rights or alteration of the latter during runtime, (b) insufficient agents’ capabilities to accomplish all their tasks, and (c) an agent overload resulting in a failure to meet some of its tasks. Consequently, a solution where multi-agents systems are reinforced with the ability to reassign the responsibilities of faulty agents to others that provide similar capabilities is needed. This necessitates to first gather information on the aptitude or inaptitude of a given agent to meet its responsibilities. Such information can then form the basis for a trusted decision as to whether alternative agents should be sought for the fulfilment of a given task.

Despite a large body of work on the usage of MAS for networks and systems monitoring (Kolaczek and Juszczyszyn, 2007; Abielmona et al., 2011), the assignment of the agents’ functions is always undertaken prior to the MAS system deployment. Moreover, the reassignment of responsibilities to other agent(s) in the event of an agent failure to conduct its tasks is impossible. Such a faulty agent may result in the monitoring system being grounded or induce the system to issue monitoring values that are either erroneous or incomplete. Needless to state that the gravity of the consequences of such a failure is stringently related to the criticality of the infrastructure or the system being monitored. Consequently, the core question addressed in this paper can be stated as: “How to ensure the continuity of the MAS monitoring activities in a way that the failure of some of the agents to fulfil the corresponding responsibilities does not drastically affect system operations?” The approach presented in this paper relies on the evaluation of the assurance that a given agent has the necessary credentials to fulfil the corresponding responsibility. A trust measure is used to trigger the automatic reassignment of responsibilities to a different agent in case of the occurrence of a hazard that results in one agent being isolated or unable to react promptly to a monitoring request. As a solution, we use a normative organisation modelling language for MAS named \textit{Moise}Inst (Gâteau et al., 2005), which is an an extension of \textit{Moise}$^{+}$ (Hübner et al., 2002), to represent security policies provided by the responsibility model of Feltus et al. (Feltus and Petit, 2009) as norms to supervise their respect by agents. Information linked to the specification of norms are used as metrics to ensure the achievement of agents’ responsibilities. Historical information on the respect of norms is used as input for the centralised evaluation of agent’s reputation.

The remainder of this article is organised as follows. Section 2 discusses the related work in terms of organisation modelling languages, responsibility models in MAS, and monitoring of security. Section 3 presents the proposed responsibility model and the condition under which an agent is expected to meet the corresponding responsibility. In Section 4, we describe the reference case-study adopted for the validation of our model. Section 5 presents an instantiation of the responsibility model through the assignment and the reassignment of the responsibilities. Finally, Section 6 provides our conclusions and perspectives.

2 Related Work

2.1 Organisation modelling languages

Different models are manipulated within a MAS that can be described by using the vowel approach AEIO (Agent, Environment, Interaction, organisation) introduced in (Demazeau, 1995). Agents deal with the models (or architectures) used for the active part of the agent, from a simple automata to a complex knowledge based system. Environments are the places where the agents are located. Interactions concern the infrastructures, the languages, and the interaction protocols between agents, from simple physical interactions to complex communicative acts. Organisations structure the agents in groups, hierarchies and relations.

Our primary focus will be on the latter. That is to say that, how MAS organise agents and set up a self-governing behaviour through cooperation between agents? There exists two possible ways of obtaining an organisation in a MAS, namely: a bottom-up or a top-down approach. Contrary
to the top-down approach, the bottom-up one does not manipulate any organisational model defined \textit{a priori} but the organisation emerges from interactions between goal-oriented agents (with objectives dedicated to themselves and not to the global society). Indeed, this approach utilises some interaction capabilities to dynamically create and adapt the MAS organisations. In this work, we consider a whole hierarchical organisation of agents dedicated infrastructure monitoring. The mapping of the MAS and architecture to the monitored system infrastructure justifies the choice of a top-down approach. To represent the complex social organisation within a MAS, organisation modelling languages have been proposed which rely on several dimensions, such as structural, functional, dialogic, environmental, and contextual.

The \textit{structural} dimension represents the structure of the collective level of a MAS generally in terms of roles/groups/links. Such a structural specification is used in AGR (Ferber and Gutknecht, 1998), ISLANDER (Esteva et al., 2002), \textit{MOISE} and \textit{MOISE}^\textit{Inst}. The \textit{functional} dimension specifies the global functioning of the system, as used in TAEMS (Lesser et al., 2004), TEAMCORE (Pynadath and Tambe, 2003), or \textit{MOISE}^+. Some models, such as ISLANDER, add a \textit{dialogical} dimension that specifies MAS interactions in terms of communications between agents. The \textit{environmental} dimension allows to constrain the anchoring of the organisation in an environment, such as in AGRE (Ferber et al., 2004). Inspired by ISLANDER, \textit{MOISE}^\textit{Inst} introduced a \textit{contextual} specification to define \textit{a priori} the transition between different configurations of norms, structures, and plans (Boissier and Gâteau, 2007). We do not intend to provide an exhaustive comparison of the aforementioned organisation modelling languages (OML) in terms of the primitives or modelling power that each can offer. The interested readers are encouraged to refer to (Coutinho et al., 2007) for a systematic comparison of OML.

As mentioned in (Boissier and Gâteau, 2007), depending on the various dimensions, the influence on the agents’ behaviour may be quite different. In models such as TAEMS, where only the functional dimension is specified, the organisation has nothing to “tell” to the agents when no plan or task can be performed. Otherwise, if only the structural dimension is specified as in AGR, the agents have to reason for a global plan every time they want to work collectively. Because the agents’ options are restricted by the structure, even with a smaller search space of possible plans, the problem is deemed a difficult proposition. Moreover, plans will be lost since no organisational memory exists. Therefore, in the context of open systems, we hypothesise that if the organisation model specifies both dimensions as in \textit{MOISE}^\textit{Inst} or TEAMCORE or a third one as in ISLANDER, then the MAS that follows such a model can be more effective in leading the group behaviour to the desired objectives. On the agents’ side, the models can develop richer reasoning abilities about agents and the organisation. Agents may gain more information on the possible cooperation (in terms of roles, groups, and on the possible goals, or on the performative structures) that may be conducted with other agents within the MAS.

Besides the aforementioned dimensions, the \textit{deontic} and \textit{normative} dimensions proposed in \textit{MOISE}^+ and ISLANDER or \textit{MOISE}^\textit{Inst} respectively address the agents autonomy problematic and consider organisations as normative constructs aiming at explicitly controlling the underlying MAS. While in other OMLs, the agents are supposed to be benevolent and must comply with the organisational specification (OS), the \textit{MOISE}^\textit{Inst} paradigm adds the possibility for agents to develop explicit reasoning on their autonomy with respect to the organisational constraints (Boissier and Gâteau, 2007).

2.2 Responsibility in MAS

A number of works have focused on the responsibility held by agents in a MAS system. According to (Sommerville, 2007), such a responsibility can be considered as a duty, held by some agents, to achieve, maintain or avoid a given state, subject to conformance with organisational, social, and cultural norms. In this work, the responsibility is modelled using: (a) the rights necessary for the agent to achieve a task or obligation, (b) the accountability, and (c) the assignment of tasks to agents that focuses on the necessity to have an agent commitment before the assignment.
Li et al. (Li and Hoang, 2009) have stressed the importance of using the responsibilities of a role in an organisation to dynamically interact with the agents but does not address the dynamic assignment of tasks to those agents. They proposed a role-interaction-organisation security model and applied the model to an e-health system, which is modelled as a MAS. These roles in this model not only determine access rights passively, but also initiate requests to interact dynamically with the agents who meet the security requirements. That is to say that, the access to confidential e-health data is prevented from unauthorised access. The interaction and the organisation models help in identifying the actions and responsibilities that a role can assume in the system within the organisation and any dynamic interactions that the system can partakes. In (Guemkam et al., 2011) the authors have proposed an agent-based framework to support an alert mechanism for power distribution systems by using a reputation-based trust approach. The architecture provides a framework for dynamically assigning responsibilities to agents depending on the context (e.g., crisis situation). This permits the management of the agents’ access rights towards critical information. This reputation-based trust measure relies on the similarity views between two agents during the assignment process. However, this scheme does not take into account the assurance or body for evidence that is necessary for an agent to fulfil a task.

2.3 Monitoring of security

MAS have also been extensively used for monitoring the security of a given system. For instance, the authors in (Boudaoud et al., 2000) proposed an intelligent multi-agent approach for the design of an Intrusion Detection System (IDS) with a clear specification of the responsibilities of each monitoring agent. The proposed scheme operates at two layers. Firstly, at a higher level, the manager layer operates and manages the security of the network. Three different agent types are involved. The Security Policy Manager agent manages the policies specified by the network security administrator. The Intranet Manager agents control the local agents that monitor the network traffic flow and report to them. These are managed by the Extranet Manager agent which assigns and delegates them intrusion detection tasks. Finally, the operations of the Extranet Manager agents are controlled by the policies of the Security Policy Manager agent.

Later in (Kolaczek and Juszczyszyn, 2007), Kolaczek et al. proposed an attack pattern ontology and a formal framework within a distributed multi-agent IDS. In this approach it is assumed that the network system consists of a set of nodes. Two types of agents are considered. Monitoring agents observe the nodes, process captured information and draw conclusions that are necessary to evaluate the current state of system security within their areas of responsibility. Managing agents are responsible for gathering information from Monitoring agents and generating reports about global threats and ongoing attacks. Each Monitoring agent monitors its area of responsibility that may consist of a set of network nodes.

Servin et al. introduced a reinforced learning-based approach for the design of an intelligent multi-agent IDS to detect new and complex distributed attacks (Servin and Kudenko, 2008). In this reinforced learning architecture, each network sensor agent learns to interpret local state observations, and then communicates the information to a central agent higher up in the hierarchy. These central agents, in turn, learn to send signals up the hierarchy, based on the signals that they receive. The agent at the top of the hierarchy learns when to signal an intrusion alarm.

In (Abielmona et al., 2011), Abieloma et al. propose an architecture which is referred to as retroactive. It cumulates both proactive and reactive features and enables a given agent to implement a reaction strategy based on the occurrence of an event in the environment. By ensuring that each agent records the strategy associated with a given event, the architecture allows an autonomous robot to learn over a period of time. This ultimately prepares these robots to respond in real-time to actual events in the environment as they occur (Baig, 2012).

The BUGYO methodology (Ouedraogo et al., 2008) adopts a three-layers hierarchical MAS architecture for the monitoring of security assurance. The first level includes a single agent that is embedded within the server. When the server receives a request to perform a security assurance
evaluation, the server agent handles the request and identifies the appropriate multiplexer agent or MUX agent (using a role directory). Finally, probe agents trigger the associated probe in the event of receiving a measurement request from a MUX agent. The probe agents also collect measurements from instrumentations and transmit them to the MUX agents. Similarly, (Pham et al., 2008) present a security assurance evaluation approach based on attack graphs. The MAS architecture proposed in this approach is also built upon the BUGYO methodology. The concept of an attackability metric is introduced to characterise the possibility of attack along with other metrics for anomaly detection that assess both the static and dynamic visions of the underlying system.

In summary, the multi-agent based architectures for the monitoring of distributed systems examine the capacity of a software agent to achieve tasks through respect of norms or rules, and as mechanism to ensure security. However, the aforementioned models do not propose any method to reassign the responsibilities to peers when a given agent fails to fulfil its task.

3 The responsibility model

We addressed several definition of responsibility in previous sections. In this work a responsibility is considered as a state assigned to an agent to denote the: (a) obligations concerning a task, (b) accountabilities regarding its obligations, and (c) rights and capabilities necessary to perform tasks (Feltus and Petit, 2009). These main elements of our responsibility model are represented in green in Figure 2.

3.1 Responsibility and role

In our responsibility model, an obligation is a duty which links a responsibility with a task that must be performed. In \textit{MoiseInst}, a norm is an obligation or a permission that links a role with a mission to achieve.

More precisely, the accountability concept denotes a duty to justify achievement, maintenance or avoidance of some given state to an authority under threat of sanction (Stahl, 2006). Therefore, the accountability parameter contributes to the valuation of trust. An agent’s right encompasses facilities required by an agent to fulfil the desired obligations, such as the access right that the agent gets once it is assigned with a responsibility. Capability describes the required qualities, skills or resources necessary to perform a task. The capability parameter depends on number of parameters relating the agents. These include the: (a) ability to make decisions, (b) processing time, and (c) ability to analyse a problem and the location within the network. The commitment pledged by the agent represents the engagement to fulfil a task. The commitment concept has been the subject of many researches in MAS as detailed in (Singh, 2008).

![Figure 1](image.png)

\textit{Figure 1} \textit{MoiseInst}: a normative organisation specification language

\textit{MoiseInst} (Gâteau et al., 2007) is a language to describe normative organisational models through the definition of rights and duties of autonomous agents by means of unambiguous specifications. This language is founded on the \textit{Moise}+ organisational model (Hübner et al.,
It is composed of the following components that are used to specify an organisation of agents in terms of structure, functioning, evolution and norms as depicted in Figure 1 (for a complete formal description of MOISE-inst and organisation example see (Gateau, 2007)). An Organisation Specification (OS) is composed by:

- A **Structural Specification** (SS) defines: (i) the *roles* that agents will play in the organisation, (ii) the *relations* between these roles in terms of authority, communication or accountance, (iii) the *groups*, additional structural primitives used to define and organise sets of roles;
- A **Functional Specification** (FS) defines global *business processes* that can be executed by the different agents participating to the organisation according to their roles and groups;
- A **Contextual Specification** (CS) specifies, a priori, the possible evolution of the organisation in terms of a *contexts and transitions* between the specifications (such as state/transition graph);
- A **Normative Specification** (NS) defines the deontic relations gluing the three independent specification (SS, FS, CS). Norms define rights (i.e. permission) or duties (i.e. obligation, prohibition) for a role or a group to execute a *mission* in a particular *context* and during a given *time*. This is supervised by an *issuer* which can apply a *sanction* on the *bearer* if the norm is not respected. A norm is active when the *context* referred in the norm equals the current organisation context. A norm is valid as long as its *condition* is satisfied. A norm could be respected or violated as long as it is active and valid. We represent a norm as the following expression:

\[
\text{norm}: \varphi \rightarrow \text{op}(\text{cont, issuer, bearer, m, sanc, w, tc})
\]

where:
- \(\varphi\) is the condition that defines the particular state of the Organisation in which the norm may be valid.
- \(\text{op} \in \{O, P, F\}\) defines if the norm is an obligation (O), a permission (P) or a prohibition (F);
- \(\text{cont}\) refers to a context of the CS in which the norm becomes active (see below).
- \(\text{issuer}\) and \(\text{bearer}\) refer to structural entities of the SS (i.e. the whole groups and roles) from which the norm is issued and on which it is applied. Let us notice that the expression of norms refers to the notions of roles and groups and not to agents themselves. In this way, the norm expressions are independent of the kinds of agents that could populate the system at one time.
- \(m\) refers to a mission of the FS concerned by the norm.
- \(\text{sanc}\) contains the reference of a different norm in the NS. It expresses a “sanction” to apply in case of norm violation.
- \(w\) defines a priority used for solving conflicts between norms in case of incoherence (Kollingbaum et al., 2006), when for instance an agent could be constrained by two contradictory norms.
- \(\text{tc}\) specifies when the norm is valid: before (‘<’), while (‘=’) or after (‘>’) a date.

Obligations of the responsibility model are composed of a deontic operator (e.g. “Obligation”) and a task (for instance, “Must retrieve the log” is composed of the operator “Must” and the task “retrieve the log”). In order to perform a parallel between the responsibility model and the normative organisation model of MAS, each task composing an Obligation of the responsibility model is transformed into a root goal of the FS. These root goals are then decomposed in sub-goals coming from the Capabilities needed to achieve the Obligation and grouped in missions \(m\). Rights needed to achieve Obligations are seen as condition \(\varphi\) making the corresponding norm \(\text{norm}\) been valid. To summarize, a Responsibility and its linked Obligations is seen as a role and all norms where it is the *bearer*. The Figure 2 illustrates the main elements of a simplified view of MOISE-inst (in blue) with their corresponding match in the responsibility model (in green).
3.2 Assurance and trust

Although many conditions may need to be fulfilled to ensure that an agent meets its responsibilities, it is imperative that the following ones are met:

1. Rights: the set of rights entrusted to the agent must enable the satisfaction of the agent’s obligations.
2. Capability: the overall capability assigned to an agent must be below the agent’s intrinsic capability. Moreover, such capability should enable the agent to fulfill its obligations.
3. Level of trust: should be higher or equal to a minimum (predefined) threshold (T_{min}).

Based on the above requirements the assurance for an agent to fulfill the obligation should be based on: Assurance for fulfillment of obligation “o” by an agent with right “R”, capability “C”, and trust “T_p”:

$$A_o(R, C, T_p).$$

No assurance:

$$A_o(R, C, T_p) = 0 \text{ if } (R_o \notin R) \cup (C_o \notin C) \cup (T_p \geq T_{\text{min}})$$ \hspace{1cm} (1)

Otherwise:

$$A_o(R, C, T_p) = 1$$ \hspace{1cm} (2)

where

- R: the current rights of the agent;
- C: the current capabilities of the agent;
- R_o: the set of rights necessary for fulfilling obligation o;
- C_o: the set of capabilities necessary for fulfilling obligation o;
- T_p: the trust at period p.

Relations (1) and (2) imply that the satisfaction of an obligation can only be guaranteed if the set of rights allocated to the agent and the current capabilities are both subsets of the set of rights and capabilities required for the satisfaction of the obligations and if the trust level at period (T_p) is higher or at least equal to the reference T_{min}. It is noteworthy to mention that more than one agent may fulfill such requirements and subsequently, the decision to select one of those as an alternative to a faulty agent will be based on the highest level of T_p.

From the MAS point of view the main concern is how to develop an organisation infrastructure that ensures the satisfaction of the organisational constraints and norms (e.g. agents playing the right roles, committing to the allowed missions). Many implementations of the organisation
infrastructure follow the general architecture depicted in Figure 3. Domain agents are responsible to achieve organisational goals and use an organisational proxy component to interact with the organisation. The organisational layer is responsible to bind all agents in a coherent system and provides some services for them (Kitio et al., 2007). In particular, they are in charge of verifying above conditions in order to decide of a potential reorganisation. The level of trust T_p of each of the component is provided by the organisational layer based on direct information as detailed in (Guemkam et al., 2011).

Figure 3 Common organisation implementation architecture for open MAS (Kitio et al., 2007).

The next section describes a case-study that we adopt to illustrate the reassignment of an obligation based on assurance and trust values.

4 The broadcasting mechanism case-study

Figure 4 Broadcasting mechanism of weather alerts

The broadcasting mechanism (as depicted in Figure 4) aims at sending alerts to the population using media, such as Short Message Service (SMS) whenever a severe weather alert occurs. For
that, sensors are disseminated on three layers corresponding to geographical areas (city, region, or country) and retrieve information pertaining to pressure, temperature, and electric voltage from probes located within a weather station and from the electrical grid. Regarding the different layers, sensors and aggregators have specific responsibilities:

- The Alert Correlation Engine (ACE) collects, aggregates, and analyses weather information from the probes deployed over the network and weather stations.
- Confirmed alerts are sent to the Policy Instantiation Engine (PIE). The PIE receives confirmed alerts from the ACE, sets the severity level, and the extent of the geographical response. The PIE also instantiates high level alert messages to be deployed.
- Finally, the high level alert messages are transferred to the Message Supervising Point (MSP).

5 Assigning the responsibilities to the agents

5.1 Implementation

The architecture is composed of different types of agents that play a collaborative role. The agent architecture presented in Figure 4 is based on the ReD’s one (Gâteau et al., 2009). It proposed a solution to enhance the detection/reaction process and to improve the overall resilience of critical infrastructures. We extended the aforementioned architecture to accommodate the need for the responsibilities reassignment. The main agents involved include the: (a) ACE, (b) PIE, (c) MSP, and (d) Message Broadcasting Point (MBP).

Figure 5 Message Supervising Point (MSP) architecture.

The MSP (Figure 5) is composed of two modules: (a) the Policy analysis (PA) and (b) the Component Configuration Mapper. The PA is in charge of analysing the policies previously instantiated by the PIE. For that, the Policy Status database stores all of the communication policies and the corresponding status (in progress, not applicable, bypassed, enforced, removed), so that the PA module can check the consistency of the newly received message to be deployed. The Component Configuration Mapper module selects the appropriate communication channel.

Figure 6 Message Broadcasting Point (MBP) architecture.

The MBP is in charge of receiving the generic alert messages from the MSP. Then a specific parser converts the incoming alert message to the appropriate format according to the channel. Figure 6 presents two different kinds of MBPs. Different communication channels (e.g., SMS, email, micro-blogging) to send alerts to citizens, hospitals, etc. are used. Consequently, our electric blackout prevention system is easily extensible for future communications facilities.
To consider the centralised trust of each agent, the organisational layer instantiated here with \textsc{Utopia} from (Schmitt et al., 2011), maintains a database of levels of trust of agents regarding the status of the accomplishment of their missions. This means that the MBP, the ACE, and the MSP have dedicated levels of trust. \textsc{Utopia}'s context permits to assign and manage the responsibilities of the components, such as MBP and MSP. Thereby, \textsc{Utopia} controls the assignment of roles in an intelligent manner by taking into account the current level of assurance of a given norm to be respected as well as the trust level T_p of the agents.

Figure 7 introduces the extended ReD architecture illustrated with the weather broadcast alert system. The flow starts with an alert raised by a probe (Voltmeter and Weather Station). The alert is transmitted by the MBP to the ACE agent (City Layer) that confirms or not the alert to the PIE. The PIE then decides to apply new policies or to forward the alert to an ACE from a higher layer (Region Layer). The PIE agent sends the policies to the MSP agent that decides which MBP is able to transform the high level alert message into an understandable format for the selected communication channel (Feltus et al., 2010).

To manage access rights, we add to the architecture a Context Rights Management module (CRM) (right-hand side of Figure 7). The CRM is linked to the database storing information on the agents’ rights which allows it to provide and amend the access rights to agents. It is also linked to the Context Manager of \textsc{Utopia} to detect changes in the context, particularly when an agent has not sufficient capabilities anymore as described in (Guemkam et al., 2011).

5.2 Organisation

Based on the agents’ responsibility model shown in Figure 2, we define the responsibilities of each agent within the architecture. Table 1 summarises the necessary capabilities and the rights for the agents playing the MBP role to accomplish a given obligation. We observe that the responsibilities include obligations, such as the obligation O_1 to retrieve the logs from the component it monitors.
Table 1 Message Broadcasting Point (MBP) Responsibilities Specifications.

<table>
<thead>
<tr>
<th>Capabilities & Rights</th>
<th>Agent’s Obligations</th>
<th>Mapping of Capabilities to Obligations</th>
<th>Mapping of Rights to Obligations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capabilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_1: Is on the same network as the component to control</td>
<td>O_1: Must retrieve the logs from the component it monitors</td>
<td>C_1, C_4, C_6, C_7</td>
<td>R_1, R_2, R_4</td>
</tr>
<tr>
<td>C_2: Be able to communicate with the MSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_3: Be able to communicate with the facilitator agent</td>
<td>O_2: Must provide an immediate reaction if necessary</td>
<td>C_1, C_2, C_3</td>
<td>R_1, R_2, R_3</td>
</tr>
<tr>
<td>C_4: Have enough computing resource to monitor the component to control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_5: Be able to communicate with the MAS Management layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_6: Must be able to encrypt data</td>
<td>O_2: Must communicate with the facilitator in order to get the address of the other components (MSP, ACE)</td>
<td>C_3</td>
<td></td>
</tr>
<tr>
<td>C_7: Be able to communicate securely with the ACE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_1: Allow to read log file on the concerned network component</td>
<td>O_4: Must report the incident to the ACE in a secure way</td>
<td>C_5, C_6, C_7</td>
<td>R_5</td>
</tr>
<tr>
<td>R_2: Allow to write log in the central logs database</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_3: Be able to read the Policy in the MAS management layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_4: Allow to read and right in the alert database</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

and O_2 to provide an immediate reaction if necessary. To perform the latter obligation O_2, it must have the capabilities to be on the same network as the component it controls, such as voltmeter, thermometer or barometer (C_1), to be able to communicate with the MSP (C_2), with the facilitator agent (C_3), etc. It also must have the rights R_1 to read the log file on the concerned network component, R_2 to write the log in a central logs database and finally R_3 to be able to read the Policy in the MAS management layer.

5.3 Re-organisation

In the considered scenario, we assume that at time t, the GSM/GPRS network is down, which impacts the rights and capabilities of the agents to fulfil their respective obligations. Table 2 provides the new capabilities and rights of the agent MBP-SMS as well as the corresponding assurance values to meet a given obligation. Such assurance value is based on the metrics provided in Section 3. After taking into account the specifications of the responsibilities associated with each MBP agent (cf. Table 1), one can assess whether current rights, capabilities, and trust level of MBP agents can be sufficient to fulfil a given obligation.

Let us consider for instance the information of MBP-SMS in Table 2. The current status of that MBP is such that it will not be able to fulfil the obligation O_2. The obligation to provide an immediate reaction is hindered by the fact that the MBP does not have the capability to communicate with the MSP (C_2). This means that any appropriate policy cannot be grounded to the MBP and be implemented in case of abnormality within the infrastructure. In the event that the assurance value for meeting a given obligation is “0”, like in the cases discussed above, such an obligation is dedicated to an agent having the required rights and capabilities and belonging to the same group. For that, the following steps are executed (labelled from 1 to 3 on the Figure 7):

1. The CRM inspects the contextual state of the institution and detects that MBP-EMAIL has the capability to take the MBP-SMS’s responsibility. In order to transfer the responsibility from MBP-SMS to MBP-EMAIL, the CRM simply sends the suitable transitions to UTOPIA in order to change the contexts. The interested reader may refer to (Guemkam et al., 2011) for more information about contexts and responsibilities.
2. This allows \textit{Utopia} to reorganise the agents’ responsibilities taking into consideration their obligation fulfilment assurance (i.e. having rights and capabilities to accomplish the missions and having a trust level higher than T_p). As a consequence, MBP-SMS loses its access rights, is isolated and its responsibilities are transferred to the MBP-EMAIL;

3. The MBP-EMAIL agent that receives the additional MBP-SMS’s responsibilities requests the underlying access rights to the CRM.

This top-down approach based on an a priori organisation specification is centralised (one \textit{Utopia} instantiating one organisation linked to one CRM with centralised databases), however agents are autonomous (they are supervised by \textit{Utopia} but not controlled) and able to choose which goal to reach. In this use-case, some agents are only used as sensors (e.g. MBP) and thus do not achieve their mission because they are able to do it. Goals of MBP agents are mainly to sense the distributed system and deploy some new responsibilities. We could imagine other use-cases in which agents would be able to respect or not their obligation because of local objectives to reach. Responsibilities are considered as security policies and are translated and interpreted in \textit{Moise}’s norms. \textit{Moise} is an organisation modelling language, not a security policy language. Our MAS system framework based on ReD architecture is able to take into account several standard security message formats such as XACML or OrBAC for access control, CIM-SPL for policy language and even IDMEF for intrusion detection. In this work, we add to the framework the possibility to interpret responsibilities model and evaluate the assurance of obligation fulfilment. Assurance evaluation and trust-based re-organisation is a solution to improve security. If an agent becomes malicious, it will no more respect its obligations and as a consequence its responsibilities will be transferred.

\section{Conclusion}

This paper presented a novel approach to address the dynamic reassignment of an agent’s responsibilities to its peer when it becomes unable to carry out its obligations. Indeed, MAS are widely used for the monitoring of distributed systems, but the assignment of the agents’ functions is undertaken prior to the MAS system deployment. The proposed model exploits the concepts of assurance and trust as the indicators for identifying respectively, when an agent becomes unable to meet its obligations, and for selecting the alternative peer that is believed to have a higher reliability for carrying out the task. An instantiation of the model has been presented on a weather station case-study. The architecture is developed using ReD and \textit{Utopia} and has been shown to be effective during our first simulations, in ensuring the continuity of the monitoring in the event an agent was to lose some of its capabilities or rights. We simulated several responsibility assignment and reassignment for validating the approach and monitored the behaviours of the MBP, MSP and ACE deployed in different locations with different parameters. However, the instances discussed in this paper only considered one faulty agent at a time.

Our future work will therefore be directed towards the consideration of more complex scenarios, such as agents failing simultaneously and consecutively after the occurrence of an adverse event.

<table>
<thead>
<tr>
<th>Tasks and Responsibilities</th>
<th>Trust</th>
<th>Current agents’ capabilities</th>
<th>Current agents’ obligations</th>
<th>Assurance of obligation fulfilment</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_1: Must retrieve the logs from the component it monitors</td>
<td>$T_p = 0.5$</td>
<td>C_1, C_4, C_6, C_7</td>
<td>R_1, R_2, R_4</td>
<td>1</td>
</tr>
<tr>
<td>O_2: Must provide an immediate reaction if necessary</td>
<td>C_1, C_3</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>O_3: Must communicate with the facilitator in order to get the address of the other components (MSP, ACE)</td>
<td>C_5</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>O_4: Must report the incident to the ACE in a secure way</td>
<td>C_5, C_6, C_7</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

\textbf{Table 2} Rights and capabilities of MBP-SMS at time t
The comparison of our solution to existing ones will also be conducted. Its performance will be measured using projects such as Bay Area Research Wireless Access Network (BARWAN), which focuses on enabling truly useful mobile networking across an extremely wide variety of real-world networks and mobile devices. We also plan to adapt our architecture in the context of Cloud Computing. The goal will be also to detect defective agent and reorganise them in order to make them able to respect negotiated and signed Service Level Agreement (SLA) between a service provider and a service consumer.

Acknowledgement

This work was partially funded by TITAN Project (C08/IS/21), financed by the National Research Fund of Luxembourg.

References

