THE MEDIAN RESOURCE FAILURE CHECKPOINTING

Suleman Khan, Khizar Hayat, Sajjad A. Madani
COMSATS Institute of Information Technology (CIIT),
Abbottabad 22060, Pakistan.
Email: sulemankhan1984 @yahoo.com, khizarhayat @ciit.net.pk, madani @ciit.net.pk

Samee U. Khan
Department of Electrical and Computer Engineering, North Dakota State University,
Fargo, ND 58108-6050, USA.
Email: samee.khan @ndsu.edu

Joanna Kolodziej
Department of Mathematics and Computer Science, University of Bielsko-Biala,
PL-43300 Bielsko-Biala, Poland.
Email: jkolodziej@ath.bielsko.pl

KEYWORDS

Fault tolerance, Checkpointing, Distributed systems

ABSTRACT

In grid computing, the realization of an enviable fault
tolerance ability is linked with the proper utilization of
resources and scheduling of jobs. The literature offers
two solutions to these two challenging tasks, viz. check-
pointing and replication. A checkpointing strategy is
being proposed that uses the median of failure inter-
vals of the resources in deciding the checkpoint intervals
for the given jobs. The strategy shows improved sys-
tem throughput, job losses and job execution times while
eliminating unnecessary checkpoints.

1 INTRODUCTION

It is a usual human tendency to pay little attention to the
aspect of fault tolerance, while designing a system. Take,
for example, your electronic wrist watch, if it misreports
the time costing you some important assignment, the fo-
cus of your fury would be the weak battery rather than the
watch. The blame is mainly on the watch maker who, for
the sack of economy, has ignored the fault tolerance facet
and has not put much effort to incorporate any function-
ality to alert a user in case of low battery. On the other
hand, an ordinary car possesses a fault tolerant mecha-
nism against low battery, for the dividends it has for its
manufacturer. In a nutshell, a fault tolerance mechanism
is generally considered valuable for a system if it adds to
the utility of the corresponding system.

When it comes to the distributed grid environments,
the concept of fault tolerance becomes rather more im-
portant. Due to the heterogeneous nature of the underly-
ing infrastructure, the resources are geographically dis-
persed in these systems. These resources may be ex-
ecuted under different administrative domains, each of
which may behave and deal, even a similar nature of jobs,

differently. Handling of such a dynamic and huge envi-
ronment is a challenging job and requires innovative ef-
forts to minimize the fault incidents. System faults can
be variously classified based on their nature, length and
cause of occurrence. The nature of a fault in the system
can be attributed to the hardware failure, operating sys-
tem failure, network failure, or 10 failure. A system go-
ing down due to the aforementioned failures may lead to
catastrophic results. The most common causes of occur-
rence of system fault are incompatibility of various de-
vices, improper software, and external intrusions (John-
son, 1996).

Fault tolerance, in a grid environment, is dependent
on the apt utilization of resources as well as on the bal-
anced scheduling of jobs. The grid computing literature
offers two solutions to implement proper resource utiliza-
tion and scheduling, namely the checkpointing (Wong
and Franklin, 1996; Cao and Singhal, 2003; Deng and
Park, 1994) and replication (Narasimhan et al., 2000;
Saito and Levy, 2000; Ratner et al., 1999). Both these
approaches have their disadvantages when used in the
static mode. With the former, when checkpointing re-
quests are generated, it stops the job and saves its pre-
vious state on a stable resource. This may consume a
fair amount of time in generating, storing and recover-
ing the checkpoints back. On the other hand, although
replication produces its replicas on free available com-
putational resources giving more chance for a job to be
executed; the execution of more replicas in a resource-
poor distributed environment may lead to low through-
put and high job execution times. In this work we focus
on the checkpointing aspect and propose a strategy based
on our median resource failure checkpointing (MRFCP)
algorithm.

The paper is organized as follows: Section 2 explains
the related work followed by a discussion on the pro-
posed method in Section 3. The simulation results are
presented in Section 4 whereas the conclusion is given in
Section 5.

2 RELATED WORK

Checkpointing is used to save the executed portion of the
jobs running on a resource in case of anticipated resource
failure (Pruyne and Livny, 1996). When a checkpoint re-
quest is generated, an executable portion of the job states
are stored on stable resources (Bouabache et al., 2008).
After a resource failure, a job is migrated to the some
other available resource(s) for its further execution; it re-
builds the previous states of the job by recalling from the
stable resources. The main advantage of using check-
pointing is that a job does not start its execution from
the start whenever a resource fails. On the other hand,
extensive checkpoints requests may lead to overheads in
terms of latency, job execution time and system manage-
ment (Plank et al., 1995).

The scheme, given in (Silva and Silva, 1998), does not
save a checkpoint on a disk while using the main memory
of its neighboring processors. When a checkpoint request
is generated, it saves the states of the jobs in its main
memory as well as in its neighbor’s. All the resources
are arranged in a virtual ring. Each resource has only
one connection to it neighboring resource for keeping a
record of checkpoints. Each resource should keep two
slots of space for the checkpoints; one for its own local
states and other for its preceding neighbor resource. The
technique is simple and the nature of its failures is not
that serious. In addition, it is memory intensive, resulting
in high overhead in the shape of system complexity for
larger grid environments.

The coordinated checkpointing strategy of (Tamir and
Squin, 1984) introduces the concept of a coordinator
which stops the processing of a job while taking the im-
age of the job on resource. It also broadcast the mes-
sage to all the resources to stop their processes and take
the checkpoints. Each resource, in return, sends an ac-
knowledgment message to the coordinator telling that
the checkpoint process has been successfully completed.
Thereupon a success message is broadcast, by the co-
ordinator, to all the resources who then discard the ex-
isting checkpoint image and update their individual ta-
bles. Due to the involvement latency overheads in the
process, de-blocking of the checkpointing is preferred
on part of many resources, in practice, thus violating the
agreed policy (Elnozahy and Zwaenepoel, 1992). A rem-
edy is therefore inevitably needed to avoid the latency
overhead. In (Koo and Toueg, 1987), the overhead is
minimized to some extent by adopting a two phase pro-
tocol which reduces the coordinated checkpointing. In
the first stage, the checkpoint initiator sends a message
to those jobs to which it communicated during the last
checkpointing process. These jobs, in turn, send the mes-
sage to all those jobs with which they communicated in
their last specified checkpoint stage. This process fur-
ther continues until all jobs which were involved in the
last checkpoint receive a message. In the second stage,
all the processes which were identified in the first stage
make checkpoints. This results in consistent checkpoints
with lesser overhead.

An incremental checkpointing concept has been in-
troduced in (Agarwal et al., 2004), in which the data
is stored in a block of memory which has been modi-
fied since the last checkpoint wave. A protocol is used
which directly distributes the checkpoint images in mem-
ory of its computer peers, as in the FT-MPI' project or
Charm++> project. An advantage of this approach is
that it does not stop the other processes which were not
part of the last checkpointing process. The strategy cre-
ates consistency of checkpoint images among those jobs
which were part of the last checkpointing process. This
reduces lot of overhead and economizes a job’s execution
time. Bouguerra et al. (2010) propose their “coordinated
Checkpoint/Restart mechanism” based on three factors,
namely the process failure distribution, the cost to save
a global consistent state of processes and the number of
computational resources. Relying on a reliability analy-
sis, the authors employ their mechanism to ascertain the
optimal interval between checkpoint times while mini-
mizing the average completion time. The authors claim
about 20% improvement in the checkpoint rate through
the adoption of their proposed model. Another check-
pointing scheme is outlined in Bouguerra et al. (2011)
that mainly deals in batch jobs under the constraint that
failures obey a general probability distribution.

3 THE PROPOSED METHOD

The grid environment scenario considered to elaborate
the proposed strategy is shown in Fig. 1. It consists
of four distributed heterogeneous sites with 32 com-
putational resources each. The given sites are con-
nected through a wide area network and computational
resources within site are connected through a local area
network. The users, through a user interface (UI), submit
their jobs to the grid transparently. A resource broker is
responsible to assign the user jobs to the available and
suitable resources. Table 1 describes the symbols used
in the explanation of the proposed strategy. The median

Table 1: List of symbols

Symbol Description

RT/ Remaining time of the job J on resource r
MRF, Median failure interval of r

ET? Execution time of J on r

I Interval

CI Checkpoint interval

cr’ Checkpoint interval of J on r

CI7"™" New selected checkpoint interval for .J on r
CI7" 0Old checkpoint interval for .J on r

CRD Checkpoint run-time delay

0 Fraction of J w.r.t. total

resource failure checkpointing (MRFCP) algorithm is be-
ing proposed for the modification of the initially specified

Uhttp:/ficl.cs.utk.edu/ftmpi/
2http://charm.cs.uiuc.edu

Site Aa
-+ {32CRs)

Site Co
{32 CRs)

Site Bb
oo (32 CRO8) 1oL

Site Dd
(32 CR's)

Figure 1: A Grid Computing Scenario for the proposed strategy

Input: Checkpoint request for a resource r, running several jobs
Output: Checkpoint intervals (CT;" ")
1 begin
2 it RTY < MRF,. ANDCI’ < &« ET then
3 /x 0<1 */
gnew gold
4 set C'I. «— CI: +CI
5 else
ne old
o | secr!™ o —cr
7 end
s end

Algorithm 1: The MRFCP algorithm

static checkpoint intervals. The algorithm is based on the
comparison of the remaining time (RT) of the job on a
resource and its median resource failure (MRF) interval
whereupon it decides on the running time. MRF cap-
tures the whole failure event of the resource and when-
ever the system request for checkpoints, it takes all the
failure events time of the resource and take its median
value. This median value is then compared with the re-
maining time of the job to decide the increase/decrease
of the checkpoint intervals. A pseudocode description of
the proposed MRFCP strategy is given in Algorithm 1.

An instance for the MRFCP algorithm of one job re-
source execution is depicted in Fig. 2. When RT)/ is less
than M RF,., it increases the checkpoint interval while
decreasing the frequency of the checkpoint. This indi-
cates that resource r is stable enough to execute a job or
job J has almost finished its entire execution. The second
condition shows that the checkpoint interval should not
exceed the job length. This may be important for small
jobs. If this condition is not fulfilled the algorithm de-
creases the checkpoint interval while increasing the fre-
quency of checkpoints.

4 SIMULATION RESULTS

Performance metrics

For the comparison of MRFCP with the existing check-
pointing strategies, three standard metrics were em-
ployed, namely the average job execution time, Success-
ful job execution and average number of checkpoints.

1. Average job execution time: is the total execution
time of successful jobs divided by total number of
successful jobs. It is also called average turnaround
time of the system.

2. Successful job execution: it is calculated by sub-
tracting number of failed jobs from total number of
submitted jobs in the system. This indicates the sys-
tem throughput that how much system has success-
fully executed the jobs.

3. Average number of checkpoints: this metric is cal-
culated by dividing total number of successful jobs
on total number of checkpoints of successful jobs.
Checkpoint requires time to take place, store, and to
retrieve.

Simulation setup

For the simulations, the GridSim 5.2 simulator (Buyya
and Murshed, 2002) had been employed. Besides be-
ing an effective tool to model different heterogeneous re-
sources, schedulers, users and its applications, the Grid-
Sim simulator has the facility to simulate scheduler for
single and multiple administrative domains in distributed
environments. The resources can be scheduled in two
modes, namely the space-share mode and the time-share
mode. In our simulation we have used space-share mode
for resources. Moreover, the resource strength can be

Jub Subwitted

Job Restarted

Job Restarted

3
4

? oy .

i 4 I+1

CKP RO
(RT, > MRF,)
CPrev = (CPFY. L)

CKP RQ

(RT, <MRF,)
C,,:;gmr P (C\,er" (LS (’I)

Figure 2: MRFCP running on single job resource

measured in million instructions per second (MIPS). In
addition, the resources can not only be mapped into dif-
ferent time zones but weekends and holidays can also be
mapped in the GridSim simulation environment.

Table 2: The simulation setup

Type Parameter Value
Network LAN links
- Bandwidth 56 Mbps
- Latency 1ms
WAN links
- Bandwidth 100 Mbps
- Latency 3 —10ms
Number of cluster zones 4
Nodes per zone 32
Propagation delay for IS 10 min
Host Speed 10 MIPS
Parallel execution 2 Jobs
Failure model LANL
Application =~ Workload Lublin model
Number of jobs 1500
Jobs 1/0 10 MB

Checkpoint delay

100 ms — 5 s

To include the workload for our simulation, the Lublin
workload model (Lublin and Feitelson, 2003) had been
used that generated 1500 jobs. The Lublin model speci-
fies the number of processor required, arrival time of the
jobs and time required (u) for the job execution. The
model correlates between job size, job running time, and
job inter-arrival times for daytime cycles. The param-
eters used for Lublin workload model are given in Ta-
ble 2. To inject a failure into resources we have used the
Los-Alamos National Lab (LANL) failure traces®. It is
one of the largest high performance computing sites and
has a record of the past nine years. Failure frequencies
had been modeled according to the Weibull distribution*
while the mean repair time had been modeled according
to a logarithmic distribution. Each site has different fail-
ure and repair ranges roughly spanning between an hour
and a week.

3http://fta.inria.fr/apache2-default/pmwiki/index.php
“http://www.weibull.com/Accel TestWeb/weibull_distribution.htm

MRFCP evaluation

In this section, we are comparing three state of the art
checkpointing techniques - i.e. PeriodicCP, LastFail-
ureCP (Chtepen et al., 2009) and MeanFailureCP (Chte-
pen et al., 2009) - with the MRFCP. The PeriodicCP is a
static checkpointing technique in which checkpoints are
assigned according to a prior selection of time interval. In
the LastFailureCP, the difference between the last failure
time of a resource and the current system time is com-
pared with the execution time of the job on a resource.
While in the MeanFailureCP, the remaining time of a job
is compared with the mean failure time of resource.

1. Average job execution time: The average job ex-
ecution time of a job is also called its turnaround
time. Fig. 3 plots the average job execution time,
under various check-pointing techniques, against
five different check-pointing intervals. In general,
the average turnaround time increases while de-
creasing the checkpoint interval and vice versa. This
may be attributed to the fact that more frequent
checkpointing results in more network delay be-
cause of the overheads involved in requesting, stor-
ing and retrieving the checkpoints. Among the
techniques, the PeriodicCP has the highest average
turnaround time due to its static nature as it does not
work on finding out the system load and relies on
the manual configuration of checkpoint intervals. In
comparison, the LastFailureCP omits unnecessary
checkpoints and performs better if the system has
not worked for more time, lastly. In other words, the
LastFailureCP technique is totally dependent on the
failure frequency of the resource. With the Mean-
FailureCP and MRFCP the average turnaround time
is lesser, mainly due their dynamicity; the Mean-
FailureCP remaining, more or less, independent of
the checkpoint interval. Not that, like LastFail-
ureCP, the MeanFailureCP strategy also depends on
the failure frequency of the resource and the aver-
age job execution time escalates, when the failure
interval of a resource increases. MRFCP has the
least average job execution time because it soaks up

o D

Time {H)
PR S (SR VS I N T B« S)

Q.1 0.2 0.3

Checkpoint Interval {H)

0.4

N PerjodicCP
N LastFailureCp
& MeanFailureCP

N MRFCP

Figure 3: The average turnaround time for various check-pointing intervals

higher failure intervals of the resources. The results
are even better for MRFCP at larger checkpoint in-
tervals, a fact that makes it ideal for executing larger
jobs. Moreover, it has been observed that MRFCP
is a better technique when a resource has random
failure intervals.

. Successful job execution:

This parameter shows us how many jobs was suc-
cessfully executed by a fault tolerance technique at a
given checkpointinterval. It can be readily observed
from Fig. 4 that the number of successful jobs varies
according to different checkpoint intervals. In the

ureCP and MRFCP techniques performs better than

The reason is that the static checkpointing had been
carried out in favor of higher intervals; that is why
we see its best result at a checkpoint interval of 5 H.
In such an eventuality the outcome is improved if
the number of resource failures is less and the jobs
have low execution time intervals. Generally, with
MREFCP, the number of checkpoints are reduced as

cessing while looking both at the resource failure
occurrence and the remaining time of the jobs.

5 CONCLUSION

