
Server Replication in Multicast Networks
Hamed S. Kia and Samee Ullah Khan

Department of Electrical and Computer Engineering
North Dakota State University
Fargo, ND, 58108–5060, USA

{hamed.sajjadikia, samee.khan}@ndsu.edu

Abstract—This paper studies and proposes heuristic algorithms
to solve the problem of replicated server placement (RSP) with
Quality of Service (QoS) constraints. Although there has been
much work on RSP in multicast networks, in most of them a
simplified replication model is used; therefore, their proposed
sultions may not be applicable to real systems. In this paper we
use a more realistic, and generalized model for replica placement,
which considers the latency restriction of the receivers (QoS),
bandwidth, and storage constraints of the links and nodes. We
present a mathematical formulation and propose four heuristics
that are benched marked using BRITE network generator, and
discuss the benefits and drawbacks of the static and dynamic
approaches. The proposed heuristics are experimentally com-
pared through simulations with respect to their performance and
computational complexity under different QoS constraints. The
simulation results show interesting charecteristics of the studied
heuristics.

I. INTRODUCTION

Due to the increased number of Internet broadcast ap-
plications, efficient multicast protocols have become more
important than ever [1]- [3]. Server replication has been
shown to be one of the most effective mechanisms to cope
with multicast network reliability. A replicated server services
requests within a close neighborhood. Thereby, if properly
designed, then such local servicing can significantly reduce
network traffic.

In this paper, compared to previous works [1]- [3], we
consider a generalized replicated server placement (RSP) prob-
lem, which considers the latency restriction of the receivers,
bandwidth, and memory constraints of the links and nodes.
We must notice that the proposed placement algorithms are
static in nature. However nothing precludes them from being
classified as semistatic placement algorithms [4].

II. RELATED WORK

The RSP problem has been studied extensively in the
literature. In [5] the objective was to minimize the cost of
utilizing the servers and using the link band width, while
serving requests based on their delay constraint. A database
replication system that uses prior knowledge of query tem-
plates to select database table placements such that each query
template can be treated locally is studied in [6]. In [7] authors
have defined the QoS requirement in terms of the general
distance metric, and investigated RSP in content distribution
systems trying to meet the QoS requirements of clients while
minimizing the replication cost. A two step algorithm that
minimizes the client-to-replica latency in a wide-area network

is proposed in [8]. In first step network regions where replicas
should be placed are selected and in second step replicas
are placed in different regions. In [9] authors have discussed
and compared several procedures to place replicas in tree
networks, subject to capacity, and QoS constraints. In [10]
authors have proposed four natural heuristics and compared
them numerical. The results show that the best results can
be obtained with heuristics that have all the CDN servers
cooperating in making the replication decisions. Ref. [11] have
studied RSP problem in CDNs to meet the QoS requirements
of clients while trying to minimize the replication cost which is
defined in terms of storage, consistency management, or both
of them. In [12] polynomial optimal solutions are applied to
place a given number of servers in a tree network to minimize
the average retrieval cost of all clients. Ref. [13] have studied
the constrained mirror placement problem where the mirrors
were allowed to be placed at some subset of network nodes
only. It was shown that performance improvement after placing
more mirrors beyond a certain number is not considerable.
The detailed study of the problem of web server replica
placement is presented in [14]. To make smart placement
decisions, workload information such as client latency and
rates of requests have been used to develop several placement
procedures. Also authors have evaluated the performance of
the these algorithms using both synthetic and real network
topologies, as well as web server traces, and have shown that
the placement of web replicas is crucial to CDN performance.

In this paper, compared to previous works, we consider
a generalized RSP problem, which considers the latency
restriction of the receivers, bandwidth, and storage constraints
of the links and nodes. We must notice that the proposed
placement algorithms are static in nature. However nothing
precludes them from being classified as semi static placement
algorithms [4].

III. PROBLEM FORMULATION

Consider a large-scale network represented by a graph
G(V,E), where V is the set of nodes and E is the set of links.
Let C ⊂ V , S ⊂ V , and R ⊂ V denote the clients, sources, and
replicated servers within the network, respectively. Assume
that there are |S| sources S = {S1, ..., Sn} and |C| clients
(receivers) C = {C1, ..., Cl} within the network, respectively.

Each source, Sk, casts data at a specific rate, Ra, and
each link (i, j) has a bandwidth B(i, j). Moreover, the binary
variable, yijkl, indicates if Sk sends data to clients using (i, j).
To transfer a given amount of data from Sk to Cl using

(a) Searching for the shortest path between source and clients

(b) Choosing the path with highest latency, and placing replicated servers on it

(c) Finding the shortest path from clients to replicated servers placed
in Step I, and placing replicated servers if needed

Fig. 1. Greedy algorithm

(i, j), the required bandwidth must be reserved on the link.
Therefore, the following condition must always be satisfied:

∀(i, j),
∑
l∈C

∑
k∈S

(RBk)× yijkl ≤ B(i, j), (1)

where RBk is the required bandwidth of source k.
We define the quality of service (QoS) requirements to be

the time of retrieving data from G. Therefore, the designer
must guarantee that at least one replicated server exists that
has access cost less than the QoS (the latency constraint of
Cl (Li)) , and the replicated server has the copy of the data
sent by Sk. Note that initially the network may not be able to
fulfill the QoS constraints of Cl. One methodology to ensure
fulfillment of QoS constraints is to replicate data within the
network, that must ensure the following:∑

n
t=1Xit ×Ot ≤ M i,∀(1 ≤ i ≤ n), (2)

where M i is the storage capacity of node i and Xit = 1 if
node i holds a replica of object Ot and 0 otherwise. With
data replication, better latency can be achieved that can be

represented by:

L =
∑
k∈S

∑
l∈C

∑
i

∑
j

yijkl × pd(i, j), (3)

where pd(i, j) is the propagation delay on (i, j). The RSP
problem can formally be stated as follows: Find the minimum
number of replicated servers |R| such that:

min{L =
∑
k∈S

∑
l∈C

∑
i

∑
j

yijkl × pd(i, j)}, (4)

subject to the constraints of Eqs. (1), and (2).

IV. PLACEMENT ALGORITHMS

A. Greedy

One way to reduce the overall number of replicated servers
is to identify a procedure that allows the reuse of resources.
Such a procedure can be achieved by identifying the longest
common path for each source and destination pair. Before we
detail the greedy heuristic, we define the necessary variables.
Let (RMi), (CNj) and D(i, j) =

√
(xj − xi)2 + (yj − yi)2 de-

note the storage required by Si, clients that are not selected in
Step I of Algorithm 1, and the distance between two nodes,
respectively. Note that in line 6 of Algorithm 1, 2.85 × 108

refers to the wave propagation speed assuming a velocity fac-
tor of about 0.95 for the links [1]. The greedy algorithm con-
sists of 3 steps that are explained in Fig. 1. The algorithm has a
computational complexity of O(n.m2.D(l+(l−1)3.n)+n.l),
where D is the computational complexity of the Dijkstra’s
algorithm (O(m2)) [15].

B. Greedy randomized adaptive search procedure (GRASP)
GRASP is a multi-iterative randomized heuristic. Each

GRASP iteration contains two phases: (a) construction phase
and (b) local search phase. To diversify the solution space we
use a restricted candidate list (RCL) that contains paths that
have latency greater than some percentage, α, of the maximum
latency (Max L), and follow the same procedure as in [3]:

RCL = {L(path) ≥ α×Max L}, 0 < α < 1. (5)

Each GRASP iteration produces a solution. The best overall
solution is kept as the result. Algorithm 2, constructs RCL
using data from Step I of Algorithm 1, and performs local
search. Contrary to Step II of Algorithm 1, GRASP considers
the path in RCL chosen as explained above. The algorithm
computational complexity of the aforementioned procedure is
O(n.l.m2.D + 3.n.l).

C. Path relinking

Figure 2(a) shows two example solutions for the RSP
problem, which is the required initial step for a path relinking
algorithm. In Fig. 2(b) a source-client pair (12 and 15, from the
example solutions of Fig. 2(a)) is selected randomly and fixed
if one of them is larger, by reusing the destination node. In this
figure the destination node (node 15) of the source-client pair
selected from Solution I, is reused. A new path between the
selected source-client pair can be constructed using the method
shown in Fig. 2(b). The 4th and 5th nodes of the new source-
client pair may not be connected. Such an abnormality can be

TABLE I
RECEIVERS THAT CAN BE SERVED WITHOUT REPLICATED SERVERS

Number of sources and receivers Receivers that ca be served without replicated
servers for different QoS requirements

0.85 (time unit) 1 (time unit) 1.25 (time unit)
5 sources, 25 receivers 12% 20% 44%
10 sources, 40 receivers 42.5% 57.5% 72.5%
7 sources, 28 receivers 53.3% 53.3% 75%
4 sources, 20 receivers 15% 15% 15%
3 sources, 25 receivers 20% 20% 20%

fixed by connecting them by the shortest path that confirms to
the latency constraints. In Fig. 2(b), assuming that there is no
direct link between nodes 63 and 15 in the generated source-
client pair, the problem is fixed by connecting them using
the shortest path between them. By replacing the generated
source-client pair in solutions of Fig. 1(a), two new solutions
are generated. The aforementioned process is repeated several
times until a maximum number of iterations has been reached,
and finally we choose the solution with the minimum latency.
More details on this algorithm can be found in [15].

D. Genetic Algorithm

Genetic algorithm has the following four primitive pro-
cedures: (a) generating initial population, (b) selection, (c)
crossover, and (d) mutation. To apply genetic algorithm to our
problem we start with a set of solutions, termed population
and the solution is represented by a chromosome as shown
in Fig. 2(a). Parent chromosomes are chosen randomly. After
selecting chromosome pairs, a source-client pair is chosen
randomly, and the crossover operation is performed as depicted
in Fig. 2(b). Finally, to prevent solutions from converging into
a local optimum, the mutation operation having the rate of
2% is applied. Figure 3 shows the mutation operation on a
source-client pair. In this figure, the algorithm replaces the
path from 38 to 43 with the shortest path between them.
The aforementioned process is repeated several times until a
maximum number of iterations has been reached, and finally
we choose the solution with the minimum latency. More details
on this algorithm can be found in [15].

Algorithm 1: Greedy

Step I:1

for ∀Si ∈ S = {S1, ..., Sn} do2

for ∀Cj ∈ C = {C1, ..., Cl} of Si do3

for q = 1 to m do4

for t = 1 to m do5

pd(q, t) = D(q,t)
2.85×108m/s +

Rak

B(q, t)
;

6

end7

end8

Apply DIJKSTRA algorithm with this condition:9

∀(i, j),
∑

m∈C

∑
k∈S(RBk)× yijkl ≤ B(i, j);

B(i, j)← B(i, j)−RBk;10

end11

end12

Step II:13

for ∀Si ∈ S do14

for ∀CjofSi do15

A← The path with maximum cost;16

if Eq. (3) is not violated then17

max{
∑

i

∑
j yijkl × pd(i, j)} ≤ QoS;18

A← Rk;19

M(j)←M(j)−RMi;20

end21

end22

end23

Step III:24

for ∀CNj do25

S ← CN ;26

CN ← R;27

call Step I of Algorithm 1;28

for ∀Si ∈ S do29

for ∀Cj of S do30

A← The path with minimum cost;31

if Eq. (3) is not violated then32

max{
∑

i

∑
j yijkl × pd(i, j)} ≤ QoS;33

A← Rk;34

end35

end36

end37

end38

V. EXPERIMENTAL RESULTS

We used BRITE [17] to generate a network topology
composed of 100 nodes as described in [5]. The proposed
algorithms were applied to five sets of source-receiver com-
binations whose locations were chosen randomly. In GRASP,
the α parameter was chosen to be 80% as suggested in [3].
We simulated the system for three different QoS requirements
of receivers as previously described in Eq. (2). The QoS
requirements were chosen proportional to propagation delay
of communication links. The percentage of receivers within
the system was selected randomly between 5% to 30% of the
nodes. The aforementioned parameter was previously used in
[18] and advocated in [19]. Table I, shows the percentage of
the receivers that can be served without replicated servers.
Table II summarizes results in terms of: (a) the number of
replicas needed, (b) the average latency, (c) the number of

TABLE II
NUMBER OF REPLICAS, REUSED RESOURCES, AND THE AVERAGE LATENCY OF RSP ALGORITHMS FOR VARYING LATENCY CONSTRAINTS

Number of Studied heuristics Number of replicas needed for Average latency for Reused links for Reused storage for

sources and receivers different QoS requirements different QoS requirements different QoS requirements different QoS requirements
0.85 1 1.25 0.85 1 1.25 0.85 1 1.25 0.85 1 1.25

(time unit) (time unit) (time unit) (time unit) (time unit) (time unit) (time unit) (time unit) (time unit) (time unit) (time unit) (time unit)

5 sources, 25 receivers Greedy 40 36 35 1.5672 1.8539 1.5276 15 29 23 11 13 12
GRASP 37 34 33 1.5583 1.8514 1.4866 16 30 25 12 14 16

Path relinking 32 31 28 1.5088 1.8474 1.4415 18 18 27 15 16 19
Genetic 30 28 27 1.4864 1.8203 1.4397 19 32 28 17 18 20

10 sources, 40 receivers Greedy 47 45 43 0.9187 0.8460 0.7776 34 34 13 18 17 13
GRASP 45 45 43 0.8961 0.8460 0.7776 35 34 28 19 17 13

Path relinking 37 41 42 0.8562 0.8198 0.7573 42 35 19 42 19 15
Genetic × × × × × × × × × × × ×

7 sources, 28 receivers Greedy 35 33 31 1.1603 1.0947 1.3364 33 18 21 14 13 12
GRASP 33 32 27 1.0830 1.0667 1.0738 34 19 23 15 14 14

Path relinking 30 31 26 1.0484 1.0631 1.0440 23 24 23 17 15 15
Genetic × × × × × × × × × × × ×

4 sources, 20 receivers Greedy 37 33 31 2.0124 2.2461 2.1877 25 22 23 14 12 10
GRASP 34 32 27 1.9808 2.0993 2.1083 26 24 24 15 13 11

Path relinking 32 31 26 1.9348 1.9222 2.0583 27 25 25 16 16 12
Genetic × × × × × × × × × × × ×

3 sources, 15 receivers Greedy 27 26 24 2.2856 1.9469 2.2233 27 21 22 13 9 9
GRASP 25 25 23 1.9469 1.9642 2.0609 28 22 23 14 9 9

Path relinking 23 21 19 1.9314 1.9160 1.8298 18 23 25 15 11 11
Genetic × × × × × × × × × × × ×

(a) Two example solutions

(b) Randomly selected source-client pairs and fixing the path if the 4th and the 5th nodes are not connected

Fig. 2. Path relinking algorithm

reused links, and (d) the number of the reused storage by the
studied heuristics. The results of Table II are the average of
the 135 simulations with a confidence interval of 95%. Note
that in Table II, the number of receivers are a factor of 4, and
5 of the number of sources. This is due to the fact that the
average Internet fanout is in the range of 3.8 to 4.9 [20]. Note
that in Table Finally, II “×” denotes that the algorithm under

consideration could not complete the test runs in reasonable
amount of time. Table III shows the average run time of the
studied heuristics.

VI. CONCLUSION

This paper formulated Constraint Replicated Server Place-
ment in a Multicast Networks. For the aforementioned problem
we proposed four heuristics that were benched marked using

BRITE. From the simulation results we concluded that the
genetic algorithm identifies the best placement. However, the
genetic algorithm suffers from slow execution time. Therefore
considering solution quality and computational complexity we
consider path relinking algorithm to be the ideal solution.

REFERENCES

[1] S. U. Khan, A. A. Maciejewski, and H. J. Siegel, Robust CDN Replica
Placement Techniques, 23rd IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2009.

[2] A. Benoit,V. Rehn-Sonigo, and Y. Robert, Replica Placement and Access
Policies in Tree Networks, IEEE Transactions on Parallel and Distributed
Systems, 2008, Volume: 19, Issue: 12, pp 1614-1627.

[3] B. Li, F. Chen, and L. Yin, Server replication and its placement for reliable
multicast, 9th International Conference on Computer Communications
and Networks, 2000, pp 396-401.

[4] S. U. Khan, and I. Ahmad, Comparison and Analysis of Ten Static
Heuristics-based Internet Data Replication Techniques, Journal of Parallel
and Distributed Computing, 2008, Volume: 68, no: 2, pp. 113-136.

[5] G. Rodolakis, S. Siachalou, and L. Georgiadis, Replicated Server
Placement with QoS Constraints, IEEE Transactions on Parallel and
Distributed Systems, 2006, Volume: 17, Issue: 10, pp 1151-1162.

[6] T. Groothuyse, S. Sivasubramanian, and G. Pierre, Globetp: template-
based database replication for scalable web applications, 16th interna-
tional conference on World Wide Web, 2007.

[7] X. Tang, and J. Xu, QoS-Aware Replica Placement for Content Distribu-
tion, IEEE Transaction on Parallel and Distributed Systems, Volume. 16,
no. 10, 2005.

[8] M. Szymaniak, G. Pierre, and M. Steen, Latency-Driven Replica Place-
men, Symposium on Applications and the Internet (SAINT), 2005.

[9] A. Benoit,V. Rehn-Sonigo, and Y. Robert, Replica Placement and Access
Policies in Tree Networks, IEEE Transactions on Parallel and Distributed
Systems, 2008, Volume: 19, Issue: 12, pp 1614-1627.

[10] J. Kangasharju, J. Roberts, and K. Ross, Object Replication Strategies
in Content Distribution Networks, Computer Communications, Volume:
25, no. 4, pp 367383, 2002.

[11] X. Tang, J. Xu, On replica placement for QoS-aware content distribution,
23th Annual Joint Conference of the IEEE Computer and Communica-
tions Societies, 2004.

[12] P. Krishnan, D. Raz, and Y. Shavitt , The cache location problem,
IEEE/ACM Transactions on Networking, Volume. 8 Issue: 5, 2000.

[13] S. Jamin, A.R Cheng Jin Kurc, D. Raz, and Y. Shavitt, Constrained
mirror placement on the Internet, 20th Annual Joint Conference of the
IEEE Computer and Communications Societies, 2001.

[14] L. Qiu, V. Padmanabhan, and G. Voelker, On the Placement of Web
Server Replicas, 20th Annual Joint Conference of the IEEE Computer
and Communications Societies, 2001.

[15] M. Gendreau, and J. Potvin, Handbook of Metaheuristics, Springer
science and Business media, 2010.

[16] D. Whitley, A Genetic Algorithm Tutorial, Statistics and Computing,
pp: 6585, 1994.

[17] BRITE available at: http://www.cs.bu.edu/brite/.
[18] Z. Fei, M. Ammar, and E. Zegura, Efficient Server Replication and

Client Re-Direction for Multicast Services, SPIE/ITCOM Conference on
Scalability and Traffic Control in IP Networks, 2001.

[19] Z. Fei, M. Ammar, E. Zegura, Optimal allocation of clients to replicated
multicast servers, 7th International Conference on Network Protocols,
1999.

[20] P. Radoslavov,R. Govindan, and D. Estrin, Topology-Informed Internet
Replica Placement, 6th International Workshop on Web Caching and
Content Distribution, 2001.

TABLE III
AVERAGE SIMULATION TIME

Latency requirements of Average simulation time
receivers (time unit) (seconds)

0.85 74.3027693
1 107.574794

1.25 96.5022219

Algorithm 2: GRASP

Call Step I of Algorithm 1;1

for i = 1 to n do2

for j = 1 to l do3

A(i, j)← cost of paths;4

end5

end6

for i = 1 to n do7

for j = 1 to l do8

if A(i, j) ≥ α×max L then9

RCL← related path;10

end11

end12

end13

for ∀Si ∈ S do14

for ∀Cj of S do15

A← RCLi;16

if Eq. (3) is not violated then17

max{
∑

i

∑
j yijkl × pd(i, j)} ≤ QoS;18

A← Rk;19

M(j)←M(j)−RMi;20

end21

end22

end23

Call Step III of Algorithm 1;24

Fig. 3. Mutation

