
GENETIC-BASED SOLUTIONS FOR INDEPENDENT BATCH
SCHEDULING IN DATA GRIDS

Joanna Ko lodziej
Cracow University of Technology, Poland

Email: jokolodziej@pk.edu.pl

Magdalena Szmajduch
CDN Partner Cracow, Poland

E-mail: magdalena.szmajduch@cdnpartner.pl

Samee U. Khan
North Dakota State University

Fargo, USA
Email: samee.khan@ndsu.edu

Lizhe Wang
Center for Earth Observation and Digital Earth

Chinese Academy of Sciences
Beijing, China

Email: LZWang@ceode.ac.cn

Dan Chen
China University of Geosciences

Wuhan, China
E-mail:Danjj43@gmail.com

KEYWORDS

Data Grid, Scheduling, Data Center, Expected
Time to Transmit, Data replication, Genetic Al-
gorithm

ABSTRACT

Scheduling in traditional distributed systems has
been mainly studied for system performance pa-
rameters without data transmission requirements.
With the emergence of Data Grids (DGs) and Data
Centers, data-aware scheduling has become a ma-
jor research issue. In this work we present two im-
plementations of classical genetic-based data-aware
schedulers of independent tasks submitted to the
grid environment. The results of a simple empir-
ical analysis confirm the high effectiveness of the
genetic algorithms in solving very complex data in-
tensive combinatorial optimization problems.

INTRODUCTION

In today’s modern heterogeneous computational
systems with massive data processing, data-aware
scheduling is one of the crucial problem, which
has attracted considerable attention of researchers
in data intensive computing. Much of the cur-
rent efforts are focused on scheduling tasks work-

loads, data location reorganization [8] and energy-
effective scheduling in large-scale data centers [4].
In many grid and cloud approaches, the schedul-
ing problems are divided into two main classes: (i)
those, which can be solved in computational sys-
tems, where usually it is assumed that data is deliv-
ered a priori and no data transfer times, data access
rights, data availability (replication) and security
issues are considered; and (ii) those, which can be
solved just in Data Grids or data centers. However,
efficient grid or cloud schedulers must take into
account the features of both computing and data
infrastructures to achieve desired performance of
grid-enabled applications [7]. In such systems the
data hosts are usually distributed in similar way as
the computational nodes, which makes the general
scheduling problem a real research challenge [3].

In this work, we address a general grid schedul-
ing problem of data intensive applications submit-
ted independently by the grid end users. Based
on our previous work [6], we have integrated the
data transmission and data nodes location criteria
with the traditional scheduling objectives, namely
makespan and flowtime. We provided a simple em-
pirical analysis with genetic-based schedulers, that
have been also tested in our previous works for sim-
ilar class of problems, where data access and pro-
cessing were ignored (see [5] for details). This anal-
ysis confirms a high effectiveness of genetic-based



schedulers in solving complex data-intensive com-
binatorial optimization problems in the dynamic
computational environments. All the experiments
have been conducted by using Data-Sim-G Batch
data-aware grid simulator developed by the au-
thors.

The remainder of this paper is structured as fol-
lows. First we define a modified Expected Time
to Compute matrix model for data-aware indepen-
dent batch scheduling. A brief presentation of the
genetic schedulers and main concept of Data-Sim-G
Batch grid simulator is followed by a simple analy-
sis of the experiments conducted for two variants of
the genetic schedulers. The paper ends with simple
conclusions and future research plan.

DATA-AWARE SCHEDULING IN THE
GRID SYSTEM

Data-aware ETC Matrix model

We consider in this paper a general batch schedul-
ing problem of tasks independently submitted to
the system by the data-grid end users. This prob-
lem can be defined by the following four compo-
nents (see also [6]):

• a batch of grid applications (tasks) Nbatch =
{t1, . . . , tn} , where n - is the size of the batch
(the number of tasks in the batch);

• a set of computational grid resources Mbatch =
{m1, . . . ,mk}, (k - is the total number of
machines available in the system for a given
batch;

• a set of data-files Fbatch = {f1, . . . , fr} needed
for the completion of the tasks from Nbatch;
and

• a set of data-hosts DH = {dh1, . . . , dhs} with
the necessary data service capabilities.

We assume that ‘tasks’ in our model can be com-
plex data-intensive applications, and ‘machines’
can be single CPUs, parallel machines or even small
local computing clusters. Those applications re-
quire multiple data files from data hosts, which can
be also distributed in the grid system. It means
that data files needed for completing the grid ap-
plications can be located (and/or replicated) at var-
ious grid nodes and their transfer to the computa-

tional nodes can be provided by the networks of
varying capability.

For the characteristics of tasks in the batch, we
introduce a batch workload vector WLoadbatch =
[wload1, . . . , wloadn], where wloadj denotes an es-
timation of the computational load of a task tj (in
Millions of Instructions –MI). Each task tj requires
a set of files Fj = {f(1,j), . . . , f(r,j)} (Fj ⊆ Fbatch)
that are distributed on a subset DHj of the data
nodes DH. We assume that each data host can
serve multiple data files at a time and data repli-
cation is a priori defined as a separate replication
process [6].

The computational nodes of the grid system can
be characterized by a a computing capacity vec-
tor CCbatch = [cc1, . . . , ccm], where cci denotes
the computing capacity of the node i. Each cci
parameter (i = 1, . . . ,m) can be expressed by
clock frequencies or by MIPS (Million Instructions
Per Second) calculated for CPUs in the resources.
The estimation of the prior load of each com-
putational node from a given Mbatch set is de-
fined by a ready times vector ready times(batch) =
[ready1, . . . , readym]. The workload and comput-
ing capacity parameters for tasks and computing
grid nodes can be generated by using the Gamma
probability distributions for the expression of tasks
and machines heterogeneities in the system (see [5]
, chapter 2 , for details).

Data-aware task execution time model

We use the Expected Time to Compute (ETC) ma-
trix model [1] for an estimation of times needed
for the completion of the tasks assigned to the
grid resources assuming also the data transmis-
sion times from the data nodes. A general con-
cept of conventional ETC matrix model, used very
often for solving the independent grid scheduling
problems is based on the ETC array structure
ETC = [ETC[j][i]]n×m, where ETC[j][i] denotes
an expected (estimated) time needed for the com-
puting the task tj at the resource mi. The val-
ues of ETC[i][j] parameters depend depend on
the processing speed of the machines, to which
they are assigned. However, in data-aware schedul-
ing, the data transmissions times must be included
into the model. Let us denote by TT [i][j][f(p,j)] a
time needed for the transfer of the data file f(p,j)
(p ∈ {1, . . . , r}) from the data host dh(p,j) ∈ Dj to



the computational node mi. This parameter can
be calculated as follows [6]:

TT [i][j][f(p,j)] = responsetime(dh(p,j))+

+
Size[f(p,j)]
B(dh(p,j),i)

(1)

where responsetime(dh(p,j)) denotes a time needed
for receiving the first byte of the data file f(p,j)
by the computational node mi calculated from the
moment of receiving data request by the data host
dh(p,j)

1Note, that responsetime function is an in-
creasing function of the load on the data host., and
B(dh(p,j), i) denotes a bandwidth of the (logical)
link between dh(p,j) and mi.

The impact of the data transfer time on the task
completion time depends on the mode, in which
the data files are processed by the task. The are
two main such scenarios which can be considered:
(a) in the first scenario all data files needed for the
execution of the task tj are transferred before the
computational process starts, and (b) the second
scenario, where it is assumed that those data files
which are not necessary for the initialization of the
the execution of task tj may be sent to the compu-
tational node later during the calculation process
(the files are accessed as data streams during the
calculations).

Let us denote by We denote by completion[j][i]
an estimated completion time for the task tj on
machine mi, calculated from the task’s submission
till its completion in node mi with the assumption
of the access and transfer of all required data from
the data hosts. In the first scenario this parameter
can be calculated as follows:

completion[j][i] =
∑

f(p,j)∈Fj

TT [i][j][f(p,j)]+ETC[j][i].

(2)
where

∑
f(p,j)∈Fj

TT [i][j][f(p,j)] denotes the total

time required for the ‘sequential’ transfer of all data
files needed for the execution of task tj .

In the second scenario (case(b)) the completion
times for computational machines and tasks are cal-
culated in the following way:

1(

completion[j][i] = max
f(p,j)∈F̂j

TT [i][j][f(p,j)]+

+
∑

f(l,j)∈[Fj\F̂j] TT [i][j][f(l,j)]ETC[j][i].

(3)

where F̂j denotes a set of data files which are trans-
ferred prior the task execution. We will use the
above completion[i][j] parameters for the defini-
tion of the optimization criteria (schedulers’ perfor-
mance measures) in our simply empirical analysis
presented in the next section.

For making the system easily adaptable to vari-
ous scheduling scenarios, we consider the data hosts
as the data storage centers separated from the com-
puting resources. The scalability and effectiveness
of the whole such system depends strongly on the
replication mechanism and the resource data stor-
age and computation capacities, which in some
cases can be the main barrier in the schedulers’ per-
formance improvement. In our previous works [5,7]
we assumed that each computing resource has its
own data storage module. In such cases the inter-
nal data transfer times were low and we ignored
them.

EMPIRICAL ANALYSIS

In this section we present the results of a simple
empirical analysis of the performance of two imple-
mentations of GA-based energy-aware schedulers
for static and dynamic versions of the data-aware
independent batch scheduling problem in grid. We
have developed a Data-Sim-G Batch simulator by
a simple extension of our previously defined Sim-
G Batch grid simulation toolkit (see [5]) by a data
processing module The GA-based schedulers were
evaluated on two benchmarks composed by a set of
static and dynamic instances generated by the grid
simulator.

Scheduling Objectives

Scheduling phases in the data-ware scheduling are
similar to grid scheduling without data sets, and
most of the conventional grid scheduling objec-
tives, such as makespan and flowtime, can be easily
adapted to the data-aware scheduling. For the sce-
nario presented in in the following way:



• Makespan:

Makespan = min
Sched

max
mi∈Mbatch

completion[mi]

(4)

where completion[mi] is computed as the sum
of the completion times of tasks assigned to
machine mi (see Eq. 3);

• Flowtime:

– Flowtime for a machine i can be calcu-
lated as a workflow of the sequence of
tasks on a given machine mi, that is to
say:

F [i] = readyi +
∑

j∈Sorted[i]

completion[j][i]

(5)

where Sorted[i] denotes a set tasks as-
signed to the machine mi sorted in as-
cending order by the corresponding ETC
values.

– The cumulative flowtime in the whole sys-
tem is defined as the sum of F [i] param-
eters, that is:

F =
∑
i∈M

F [i] (6)

Both objectives are minimized. We con-
sider hierarchical optimization process with
makespan as the privileged (major) criterion.
Flowtime is optimized with a constrain of not
increasing the generated best makespan value.
The wider list of the scheduling criteria in data
grids can be found in [2].

Genetic-based data-aware schedulers

As a result of the wide assortment of con-
straints and different optimization criteria in
the grid scheduling, meta-heuristic methods
are the effective solutions for data intensive
grid scheduling problems [10]. Genetic-based
schedulers can easily explore the robustness of
the search space and they can tackle various
scheduling attributes.

For solving the data-aware independent batch
scheduling problem, we have used in this pa-
per two implementations of simple genetic grid
schedulers, similar to the methodologies used
in our previous works, where the big set of
benchmarks and instances of the problem has
been defined (see [5] for the summary of the
results). These implementations, namely GA
and StGA differ in the replacement mecha-
nisms. The general frameworks of the sched-
ulers are based on classical (µ+λ) evolutionary
strategy (see e.g. [9]), adapted to the schedul-
ing problem through the implementation of the
following genetic operators:

• Initialization method: Randomly gen-
erated initial population;

• Selection method: Linear Ranking Se-
lection;

• Crossover operator: Partially Mapped
Crossover (PMX);

• Mutation operator: Rebalancing;

• Replacement operators: Elitist Gen-
erational (GA) and Struggle (StGA).

The detailed definition of these techniques can
be found in [5].

Data-aware Batch grid Simulator - basic
concept

The main concept of Data Sim-G Batch simu-
lator is presented in Fig. 1.

We have extended the Sim-G Batch grid
toolkit defined in [5] by an implementation of
additional data processing module responsible
for generating (i) a set of data files, (ii) a set
of data hosts, (iii) data transmission time ma-
trix, (iv) response time vector, and (v) band-
with vector. All those data are considered
as basic characteristics of an instance of the
problem and together with (vi) workload vec-
tor of tasks, (vii) computing capacity vector,
(viii) prior load vector, and (ix) ETC matrix
are passed on to the selected scheduler, which
computes the schedule of the task assignments
to the machines. Finally, the scheduler sends
the schedules back to the simulator, which
makes the allocation.



Figure 1: General concept of Data Sim-G Batch

Key input parameters for simulator and
schedulers

The performance of genetic-based schedulers
analyzed in two types of grid environment:
static and dynamic. In both cases four
grid size scenarios: small (32 hosts/512
tasks), medium (64 hosts/1024 tasks), large
(128 hosts/2048 tasks), and very large (256
hosts/4096 tasks). The schedulers’ key param-
eters, including mutation and crossover prob-
abilities, population size and stopping criteria
(can be the maximal number of evolution steps
or termination time criterion, are presented in
Table 1.

Table 1: Shedulers’ key parameters for static and dy-
namic benchmarks.

Parameter GA StGA

evolution steps 20 ∗ m
pop. size (pop size) 4 ∗ (log2(m) − 1)
cross probab. 0.9 1.0
mutation probab. 0.2
termin. time crit. 40 secs (static) / 75 secs (dynamic)

The values of key parameters for the simula-
tor for static and dynamic grid scenarios are
presented in Table 2.

N(∗, ∗∗) denotes the Gaussian distribution.
The detailed interpretation of all parameters
is available in [5].

Each experiment was repeated 30 times under
the same configuration of operators and pa-
rameters.

Results

The averaged makespan and flowtime values
are presented in Tables 3 and 4.

It can be observed from the comparison of
the result that the struggle replacement mech-
anism has rather crucial impact on the per-
formance of the genetic scheduler. In all in-
stances but three, calculated for both criteria
in static and dynamic scenarios, StGA out-
performs classical GA scheduler. The mini-
mization of the flowtime, where StGA was the
best in all instances, is in fact noticeable if we
have into account that flowtime was consid-
ered a secondary (less important) objective in
the optimization process. Both schedulers are
rather stable in the optimization, which is con-
firmed by the low values of the C.I. parame-
ters. Finally, compare to the results achieved
by similar implementations of the schedulers
but in the case, where data transfer times are
ignored (see [5], Chapter 4 for details), the val-
ues of makespan and flowtime have increased
average by 10–25 %, which confirms the high
importance of this criterion in data intensive
scheduling.

CONCLUSIONS AND FUTURE
WORK

In this paper we have addressed a general
problem of data-aware scheduling problem of
tasks submitted independently by the grid
end-users. We assumed that for the comple-
tion of each task there are required some data
files distributed also in the grid system and
stored at heterogeneous data hosts. We have
formalized the transmission time, in a way that
it can be easily integrated into classical opti-
mization objectives of grid scheduling, namely
makespan and flowtime expressed in the terms
of completion times of task on computational
grid nodes, where data can be transferred a
priori or immediately during the task compu-
tation. For the empirical analysis, we have
implemented two versions of simple genetic-
based grid scheduler for solving the consid-
ered scheduling problem aiming to minimize



Table 2: Parameter setting for the grid simulator static instances
Small Medium Large Very Large

Static Instances
Number of hosts 32 64 128 256
Resource capacities (in MIPS) N(1000, 175)
Total number of tasks 512 1024 2048 4096
Workload of tasks N(250000000, 43750000)

Dynamic Instances
Init. hosts 32 64 128 256
Max. hosts 37 70 135 264
Min. hosts 27 58 121 248
Add host N(625000, 93750) N(562500, 84375) N(500000, 75000) N(437500, 65625)
Delete host N(625000, 93750)
Total tasks 512 1024 2048 4096
Init. tasks 384 768 1536 3072
Workload N(250000000, 43750000)

Table 3: Average Makespan and Flowtime values (± %C.I.) for static instances (C.I.: confidence interval)
Scheduler Small Medium Large Very Large

Makespan values (in arbitrary time units)
GA 4171630.27 4286741.95 4306153.30 4338090.10

(±)0.5714% (±)0.7950% (±)0.9351% (±)1.1843%
StGA 4072614.96 4179528.76 4286350.17 4299442.95

(±)0.6421% (±)0.7714% (±)1.1750% (±)1.5132%
Flowtime values (in arbitrary time units)

GA 1213553487.5 2344982276.8 4427950665.1 8421751474.6
(±)0.9532% (±)0.7980% (±)0.9792% (±)0.9917%

StGA 1205329495.4 2293768328.5 4401468978.4 8399042744.8
(±)0.9421% (±)0.8765% (±)1.3298% (±)1.2276%

Table 4: Average Makespan and Flowtime values (± % C.I.) for dynamic instances (C.I.: confidence interval)
Scheduler Small Medium Large Very Large

Makespan values (in arbitrary time units)
GA 4148152.90 4188204.13 4415066.05 4441820.13

(±)0.7560% (±)0.8501% (±)1.0724% (±)1.7805%
StGA 4262331.15 4199261.61 4381408.54 4378104.73

(±)0.8109% (±)1.4350% (±)1.9363% (±)1.8390%
Flowtime values (in arbitrary time units)

GA 1286071183.744 2269852393.768 4536176645.169 8993540827.579
(±)0.8102% (±)0.9240% (±)1.2912% (±)1.7805%

StGA 1244873655.6 2255039877.2 4498453672.8 8953201900.1
(±)0.8225% (±)0.8905% (±)1.3773% (±)1.9150%



both makespan and flowtime scheduling objec-
tives in the hierarchical mode, with makespan
as major (privileged) objective. The empiri-
cal analysis has been performed by using the
developed Data-Sim-G Batch grid simulator.
The results show that both GAs are effective
methods for keeping the makespan and flow-
time on rather low levels, although Struggle
GA performed best.

In our future work, we would like to extend
our empirical analysis for a wider class of the
schedulers and scheduling criteria, and use
similar concept for solving the cloud schedul-
ing problems.

REFERENCES

[1] Ali, S., Siegel, H.J., Maheswaran, M., and
Hensgen, D.: “Task execution time model-
ing for heterogeneous computing systems”,
Proceedings of Heterogeneous Computing
Workshop, pp. 185–199, 2000

[2] Buyya, R., Murshed, M., Abramson, D.,
and Venugopal, S.: “Scheduling parame-
ter sweep applications on global Grids: a
deadline and budget constrained cost-time
optimization algorithm”, Softw. Pract. Ex-
per., Vol. 35(5), (2005), pp. 491–512.

[3] Chen D., Wang L., Wu X., Chen J., Khan
S.U, Kolodziej J., Tian M., and Huang F.:
“Hybrid Modelling and Simulation of Huge
Crowd over a Hierarchical Grid Architec-
ture”, Future Generation Computer Sys-
tems, DOI: 10.1016/j.future.2012.03.006,
2013.

[4] Kliazovich, D., Bouvry, P., Audzevich, Y.,
and Khan, S.U.: “GreenCloud: A Packet-
level Simulator of Energy-aware Cloud
Computing Data Centers”, in Proc. of the
53rd Globecom, Miami, FL, USA, Decem-
ber 2010.

[5] Ko lodziej J.: Evolutionary Hierarchical
Multi-Criteria Metaheuristics for Schedul-
ing in Large-Scale Grid Systems, in Stud-
ies in Computational Intelligence Springer
series, Vol. 419, Springer Vlg., Berlin-
Heidelberg, 2012.

[6] Ko lodziej, J. and Khan, S. U.:“Data
Scheduling in Data Grids and Data Cen-
ters: A Short Taxonomy of Problems and
Intelligent Resolution Techniques”, Trans-
actions on CCI, Vol X, LNCS 7776, pp.
104–121, 2013.

[7] Ko lodziej, J. and Khan, S. U.: “Multi-
level Hierarchical Genetic-based Schedul-
ing of Independent Jobs in Dynamic Het-
erogeneous Grid Environment”, Informa-
tion Science, Vol. 214(2012), pp. 1–19,
2012.

[8] Kosar, T. and Balman, M.: “A new
paradigm: Data-aware scheduling in grid
computing”, Future Gener. Comput. Syst.,
Vol. 25(4), (2009), pp. 406–413.

[9] Michalewicz, Z.: “Genetic Algorithms +
Data Structures = Evolution Program”,
Springer, 1992.

[10] Venugopal, S., and Buyya, R.:“An SCP-
based heuristic approach for scheduling
distributed data-intensive applications on
global grids”, J. Parallel Distrib. Comput.,
vol. 68, pp. 471–487, 2008.

[11] Wang L, and Khan, S.U.: “Review of Per-
formance Metrics for Green Data Centers:
A Taxonomy Stud”, Journal of Supercom-
puting, pp. 1–18, 2011.


