
Slice-Based Parallelization in HEVC Encoding:

Realizing the Potential through Efficient Load

Balancing

Maria Koziri
1
, Panos Papadopoulos

2
, Nikos Tziritas

3
, Antonios N. Dadaliaris

1
, Thanasis Loukopoulos

2
, Samee U.

Khan
4

1
Computer Science, University of Thessaly, Lamia, Greece, {mkoziri, dadaliaris}@uth.gr

2
Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece, {ppapadopoulos, luke}@dib.uth.gr

3
Research Center for Cloud Computing, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen,

China, nikolaos@siat.ac.cn
4
Electrical and Computer Engineering, North Dakota State University, Fargo, USA, samee.khan@ndsu.edu

Abstract—The new video coding standard HEVC (High

Efficiency Video Coding) offers the desired compression

performance in the era of HDTV and UHDTV, as it achieves

nearly 50% bit rate saving compared to H.264/AVC. To leverage

the involved computational overhead, HEVC offers three

parallelization potentials namely: wavefront parallelization, tile-

based and slice-based. In this paper we study slice-based

parallelization of HEVC using OpenMP on the encoding part. In

particular we delve on the problem of proper slice sizing to

reduce load imbalances among threads. Capitalizing on existing

ideas for H.264/AVC we develop a fast dynamic approach to

decide on load distribution and compare it against an alternative

in the HEVC literature. Through experiments with commonly

used video sequences, we highlight the merits and drawbacks of

the tested heuristics. We then improve upon them for the case of

Low-Delay by exploiting GOP structure. The resulting algorithm

is shown to clearly outperform its counterparts achieving less

than 10% load imbalance in many cases.

Keywords— slice parallelization; load balancing; HEVC;

encoder; load distribution; video coding; OpenMP

I. INTRODUCTION

The ever increasing demands for high definition video, has
driven the development of a new video coding standard HEVC
[17] capable of providing increased compress ratios without
sacrificing video quality. As HEVC is gradually replacing its
predecessor H.264/AVC [19], optimization of encoding and
decoding time becomes of paramount importance. Recognizing
the benefits from parallelization, HEVC offers three main
options: tile, slice and wavefront parallelism. In this paper we
turn our attention on slice level parallelism in the encoder side,
using the reference software HM 16.7 [8] and OpenMP [14] for
thread programming.

Our contributions include the following:

 We further confirm earlier findings that using static,
fixed size slices leads to load imbalances among
threads (see for instance [1]).

 We develop a heuristic called TSLB (time-based slice
load balancer) which assigns load based on the time
complexity of the previous frame. Two variations were
tested. The first used the average CTU time per slice
(TSLB-Avg) as an estimator while the second (TSLB-
C) the actual time of each CTU. It should be noted that
TSLB-C borrows ideas from existing work in
H.264/AVC [24] without though being identical.
Through experimental evaluation TSLB heuristics
were shown to outperform static slice assignment as
well as the algorithm presented in [1].

 Results for TSLB establish the actual time complexity
of frames as a fast and efficient estimator. We further
improve on initial results by exploiting GOP structure
in the case of Low-Delay (LD), which is similar to but
not identical with hierarchical P coding [9]. The
resulting load balancer termed TSLB* is shown to be a
clear winner among its counterparts, with thread
imbalances rarely exceeding 20%.

To the best of our knowledge, this is the first work
providing empirical evidence on the performance of five
(including Static) slice balancing schemes for HEVC.
Furthermore, the concept of factoring hierarchical P coding in
slice balancing decisions is novel. The performance of TSLB*
as shown in the experiments illustrates the merits of our
approach.

The rest of the paper is organized as follows: Section II

provides a brief overview of the related work. Section III

illustrates the algorithms which are experimentally evaluated in

Section IV. Finally, Section V summarizes the paper.

II. RELATED WORK

Parallel techniques have been broadly applied in video
coding since the emergence of MPEG-2 back in the 90s, see
for instance [2]. In [12] parallelization of an AVS encoder with
SIMD instructions was presented. In [4] a performance
analysis is conducted both for the encoding and the decoding

side of HEVC, illustrating the need for efficient parallel
implementations. In [5] the three different parallelization
opportunities in HEVC namely wavefront, tiles and slices are
discussed with a particular interest on the first one, while [6]
focuses on wavefront parallelization, on the decoding side.

Parallelizing the motion estimation process received much
attention. In [22] different parallelization degrees are discussed
varying from single CU to groups of CUs. In [18] a combined
GPU – multi core CPU approach for parallel motion estimation
is presented, while in [13] a comparative evaluation is provided
between GPU implementation with CUDA and equivalent
implementations using MPI and OpenMP for parallel motion
estimation. In [21] a framework to analyze the dependencies of
neighboring CTUs is introduced. CTUs form a DAG which is
then scheduled for parallel computation. A similar approach is
also followed in [23] but for intra encoding using the open
source x265 encoder [20].

The aforementioned works differ from this paper in the
parallelization scope they consider. More closely related are
the works done for slice level parallelism in H.264/AVC, e.g.,
[7], [10], [16] and [24] whereby slice level parallelism is
discussed. In [24] adaptive Macroblock assignment to slices is
considered. The technique is based on weighted past average
(WPA) calculation with a factor of 0.5 in order to estimate
Macroblock cost for the next frame. Macroblocks are then
distributed in slices so as to minimize differences in aggregated
cost. The TSLB-C algorithm borrows the idea of using the
actual Macroblock (CTU in HEVC) coding time as an
estimator without though using WPA.

In [7] the problem of balancing slices was tackled by
assigning more slices than the existing cores in an effort to
reduce parallelization granularity, thus, achieving better
balance. Dynamically defining slice number exceeds the scope
of the paper. In [10] an algorithm that adapts slice size to
improve load balance is proposed. The scheme uses a fast
motion estimation preprocessing step and then applies weights
to Macroblocks depending on the results. As a consequence it
is not directly applicable to HEVC. In [16] hierarchical
parallelization is considered in two levels. In a first level
different GOPs are distributed to computing nodes. Each frame
in a GOP is encoded using slice-level parallelism. Adaptive
slice resizing though is not considered.

Concerning HEVC, the authors in [15] evaluated slice-
based parallelism under different encoding scenarios.
However, load balancing slices was not taken into account.
Perhaps, the closest to our work is [1] whereby SIMD based
parallelization is discussed as well as slice-level parallelization
with adaptive CTU-slice assignment. In the experiments of this
paper we also compare the performance of our algorithms
against the one in the aforementioned paper.

III. LOAD BALANCING ALGORITHMS

In this section we describe the algorithms that participate in
the experimental evaluation of Sec. IV. We start with the
algorithms that don’t consider hierarchical coding and proceed
with TLSB*.

A. Static even assignment (Static)

Under this scheme CTUs are evenly distributed to slices
and this allocation remains fixed for all frames. This method is
used as a performance yardstick.

B. Weight based algorithm (Weight)

The algorithm proposed in [1] is based on assigning a
weight cost on every CU depending on whether the collocated
CU in the previous frame was encoded as Skip, Inter or Intra
and its corresponding depth in the quadtree. Table I reproduces
the weight matrix for convenience.

TABLE I. WEIGHT MATRIX

CU Size Skip Inter Intra

64×64 109 760 52

32×32 42 280 16

16×16 9 71 3

8×8 2 19 1

The algorithm calculates each CTU weight as the
summation of the corresponding CU weights and slice weights
as the summation of the related CTU weights. It then assigns
the CTUs at each slice so that slices become balanced in
weight terms.

C. Time based slice load balancing using the average CTU

times in slices (TSLB-Avg)

TSLB-Avg works on a slice level. Let Si denote the i
th
 slice

(0≤i≤S-1) where S is the total number of slices. Let Tij be the
actual running time to compress Si at the j

th
 frame and Cij be the

total number of CTUs in Si. TSLB-Avg will assign CTUs to
slices proportionally to the actual slice compression times (of
the corresponding slice in the previous frame) as follows. First
for each slice the difference between its time and the average
slice time is calculated as per (1).

 (1)

If the difference is positive, the slice should leave CTUs in
order to close down to the average time, otherwise it should get
more. The number of CTUs to be left or acquired is given by:

 (2)

(2) states that if Si should leave some of its CTUs then the
average CTU time in Si (Tij/Cij) should be used to calculate how
many CTUs must be left in order for Si to have computational
time equaling the average of all slices. Otherwise, if it should
get CTUs, these CTUs will come from the subsequent slice,
thus, the average CTU time at slice Si+1 is used. The number of

CTUs to leave or acquire is set to .

When Si leaves CTUs (Dij>0 in (2)), these CTUs

will be assigned on the subsequent slice Si+1. This should be
factored in the calculation of (1) for Si+1 by adding the

overhead incurred by the CTUs inherited from Si. A

similar observation holds when Si must acquire CTUs
belonging to Si+1. (3) and (4) incorporate the above remarks.

 (3)

 (4)

Starting from the first slice (S0) and continuing until SS-2 in
an iterative manner, the algorithm uses (1), (3) and (4) to
calculate how many CTUs a slice must get or leave. The last
slice SS-1 gets the remaining unassigned CTUs. To have a
visual representation of how TSLB-Avg performs, Fig. 1
shows the size assignment of 4 slices in the 5

th
 frame of the

Bosphorus sequence [11]. Notice, that the third slice which
includes most of the boat movement is smaller compared to the
rest.

Figure 1. Screenshot from Bosphorus (frame 5).

D. Time based slice load balancing using actual CTU times

(TSLB-C)

TSLB-C works in a similar manner to TSLB-Avg. The
difference is that instead of using average CTU times in (3) and
(4) it uses the actual CTU coding times.

E. Time based slice load balancing for Low Delay (TSLB*)

One of the common test conditions defined in JCT-VC [3]
is LD (Low Delay) which uses a hierarchical GOP structure. In
all the experiments of the paper we used the default
configuration for hierarchical P frames in the reference
software HM 16.7 which is also depicted in Fig. 2.

Figure 2. GOP structure.

Hierarchical P frames prediction structure is based on the
decomposition into layers. Within each layer frames share the
same parameters (e.g QP offsets, QP factors, temporal id etc.)
and the same pattern in the group of reference pictures. In the
case of temporal scalability, those layers are known as
temporal layers and the prediction can only occur from a
picture in the same or lower layer [9]. This restriction is not
present in the structure introduced in LD configuration of
HEVC, as each frame may always reference the previous one,
regardless of the layer it belongs to. However, as the scope of
this paper does not cover scalability this has no impact.

The intuition behind TSLB* is that the time complexity of
frames belonging to the base layer such as P4 and P8 in Fig. 2
will be better predicted by the preceding frame of the base
layer rather than the previous frame number wise. In the
example, this means that P8 will be estimated using P4 rather
than P7. Notice that TSLB-Avg, TSLB-C and Weight will use
P7 instead. Another change TSLB* introduces, concerns the
estimation of the frame that immediately follows a base layer
frame. Instead of using the base layer frame, it uses the frame
immediately preceding it. For instance the estimation of P9
(not shown in Fig. 2) will be done from P7 instead of P8. The
assignment process of TSLB* is summarized and generalized
for arbitrary GOP sizes (let G) in the following equations:

 (5)

 (6)

 (7)

 (8)

The rest of the algorithm is similar to TSLB-Avg, namely
at each frame j TSLB* starts calculating the assignment from

S0 using (5)-(8) adding or subtracting CTUs to the

current assignment and proceeds up to SS-2 in an iterative
manner. The last unassigned CTUs are allocated to SS-1. When
implementing the algorithm we chose to use TSLB-Avg for the
first GOP and the estimations of TSLB* from the second GOP
onwards.

TABLE II. VIDEO SEQUENCES

Name Resolution
Frames per

second (fps)

Total

frames

CTUs per

frame

Bosphorus 3840×2160 120 200/600 2040

Traffic 2560×1600 30 150 1000

Kimono 1920×1080 24 240 510

IV. EXPERIMENTS

We conducted experiments on a Linux server with two 6-
core Intel Xeon E5-2630 CPUs running at 2.3GHz using hyper
threading. We used three sequences (summarized in Table II)
one each for FullHD, 2K and 4K. In order to save time in the
experiments we used the first 200 frames of the Bosphorus
sequence instead of the complete one. All results were obtained
assuming the LD scenario with an initial I frame followed by P
frames and a GOP size of 4 with the structure shown in Fig. 2.
QP was set to 32, bit depth was 8, CTU size 64×64, max depth
for partitioning was set to 4 and search mode to TZ.

We measured the performance of the algorithms from two
aspects. The first is the time required to process a frame, while
the second is the load imbalance incurred among the execution
time of slices measured as the following percentage:
100(MAX_Slice_Time – MIN_Slice_Time)/MIN_Slice_Time

Figs. 3-5 plot the imbalance experienced in the three
sequences for two different number of slices: 4 and 12. To
avoid cluttering, the performance of Static and TSLB-Avg are
omitted. The first gave performance worse than the Weight
algorithm, while the second one comparable to TSLB-C. The

Figure 3(a). Bosphorus, 4 slices. Figure 3(b). Bosphorus, 12 slices.

Figure 4(a). Traffic, 4slices. Figure 4(b). Traffic, 12 slices.

Figure 5(a). Kimono, 4 slices. Figure 5(b). Kimono, 12 slices.

figures show that there exist periodic peaks which correspond
to GOP changes. It is evident from the plots that TSLB* (the
intended line) clearly outperforms other alternatives especially
in the 4K sequence.

We would like to note that the peak incurred by TSLB* in
the Kimono sequence around frame 141 is due to scene change.
As part of our future work we plan on incorporating scene
detection in TSLB*. Contrary to the above the peak incurred in
Fig. 4(b) around frame 110 is not due to scene change.
Nevertheless, this doesn’t diminish the overall performance of
TSLB*.

Next we conducted experiments with the following slice
numbers: 2, 4, 8, 12 and 24. Recall from the experimental setup
that there are 12 cores available in the server running the
experiments. Nevertheless, we wanted to test how the
algorithms will fair when less cores than slices are available.
Table III summarizes the relevant speedups achieved by each
algorithm. Bolded entries indicate the winner in every run.

TABLE III. SPEEDUPS

Slice Number

2 4 8 12 24

B
o

sp
h

o
r
u

s

Static 1.74 3.35 5.83 8.09 10.44

TSLB-Avg 1.92 3.67 6.90 10.03 12.16

TSLB-C 1.93 3.66 6.88 9.90 12.15

TSLB* 1.94 3.76 7.32 10.63 12.45

Weight 1.74 3.29 5.80 8.14 10.63

T
ra

ff
ic

Static 1.94 3.43 6.45 9.26 11.33

TSLB-Avg 1.92 3.71 7.24 10.41 11.95

TSLB-C 1.93 3.72 7.18 10.52 11.94

TSLB* 1.95 3.79 7.36 10.48 11.71

Weight 1.91 3.57 6.85 9.89 11.64

K
im

o
n

o

Static 1.85 3.56 6.76 9.69 11.46

TSLB-Avg 1.96 3.81 7.35 10.67 12.05

TSLB-C 1.95 3.79 7.35 10.64 11.43

TSLB* 1.96 3.88 7.39 10.81 12.10

Weight 1.88 3.53 6.74 9.57 11.44

TSLB* is a clear winner in the Bosphorus and Kimono
sequences, while for a larger slice number in the Traffic
sequence it is defeated by TSLB variants. Another observation
that can be made is that the performance difference versus the
Static algorithm tends to increase to the number of slices. We
should also note that the performance of TSLB* is particularly
high in the 4K sequence, giving a +2.52 speedup factor versus
Static and +0.6 versus the second alternative when slices
equaled 12. In contrast, the Weight algorithm achieves only
marginally better performance compared to Static. Finally, the
run with 24 slices over 12 cores provides a margin for
improvement for all algorithms, while not changing the
relevant performance order in most cases. This result is
particularly important indicating that further improvement can

be expected for the algorithms presented in the paper, when
using the hyper threading capabilities of some processors.

To better illustrate the performance difference of
algorithms in Figs. 6-8 we plot the percentage of improvement
in execution time terms of each algorithm as compared to the
Static. Specifically, we measure the improvement as follows:
(Static_time-Alg_time)/Static_time. TSLB* (bold unmarked
line) is shown to reduce the execution time of Static by more
than 20% in the Bosphorus, more than 10% for Traffic and
more than 8% for the Kimono sequence.

Figure 6. Bosphorus.

Figure 7. Traffic.

Figure 8. Kimono.

A last note concerns video quality. It was observed in our
experiments that as slice number increased, quality dropped.
This trend is known from H.264/AVC. Nevertheless, for a
fixed slice number both PSNR and bit rate experienced only
tiny differences among the algorithms. This is especially
encouraging for TSLB* since it indicates that its performance
gains, especially against the Static, come at no cost quality
wise. We should also like to add that from our experience, once
slice parallelization is implemented, developing any of the
algorithms described (TSLB* as well) demands little
programming effort. Hence, TSLB* poses as the most viable
solution (currently) to the problem of slice balancing in
particular when Low Delay hierarchical P frames are
considered.

Summarizing our findings we can state the following:

 There exists a performance margin to gain versus the
Static approach. This margin depends on the sequence
as well as the slices used.

 Actual coding time of slices is a superior criterion
compared to the preprocessed weight costs in [1].

 By incorporating GOP structure in the decision
mechanism a very efficient load balancer can be
designed.

V. CONCLUSIONS AND FUTURE WORK

In this paper we tackled the problem of load balancing
slices in HEVC. We proposed a simple and fast algorithm
named TSLB that comes in two versions. In the first one slice
balancing decisions are taken using the recorded slice time
while in the second CTU times. The initial design is extended
for hierarchical GOP structures, resulting in TSLB*. TSLB*
was shown to outperform both the Static option and another
alternative from the relevant literature. Reductions in the
execution time of Static slice-parallelization were between 8%
and 25% for the majority of test cases.

ACKNOWLEDGMENT

This work was partially supported by travel grant of the
postgraduate program: “Informatics and Computational
Biomedicine”, School of Science, Univ. of Thessaly.

REFERENCES

[1] Y.-J. Ahn, T.-J. Hwang, D.-G. Sim, and W.-J. Han, “Implementation of

fast HEVC encoder based on SIMD and data-level parallelism,”

EURASIP J. Image and Video Processing, vol. 16, 2014.

[2] S.M. Akramullah, I. Ahmad, and M.L. Liou, “A Data-Parallel Approach
for Real-Time MPEG-2 Video Encoding,” Journal of Parallel and
Distributed Computing, vol. 30, pp. 129-146, 1995.

[3] F. Bossen, Common Test Conditions and Software Reference

Configurations, document JCTVC-H1100, JCT-VC, San Jose, CA, Feb.

2012.

[4] F. Bossen, B. Bross, K. Sühring, and D. Flynn, “HEVC Complexity and

Implementation Analysis,” IEEE Trans. Circuits Syst. Video Techn. vol.

22(12), pp. 1685-1696, 2012.

[5] C. C. Chi, M. A. Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux, and
T. Schierl, “Parallel Scalability and Efficiency of HEVC Parallelization
Approaches,” in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 12, pp. 1827-1838, Dec. 2012.

[6] C. C. Chi, M. A. Mesa, J. Lucas, B. H. H. Juurlink, and T. Schierl,

“Parallel HEVC Decoding on Multi- and Many-core Architectures - A

Power and Performance Analysis,” Signal Processing Systems vol.

71(3), pp. 247-260, 2013.

[7] J.-F. Franche, and S. Coulombe, “A multi-frame and multi-slice H.264

parallel video encoding approach with simultaneous encoding of

prediction frames,” in Proc. of the 2012 Int. Conf. on Consumer

Electronics, Communications and Networks (CECNet), pp. 3034-3038,

Apr. 2012.

[8] HM 16.7 reference software. http://hevc.hhi.fraunhofer.de

[9] D. Hong, M. Horowitz, A. Eleftheriadis, and T. Wiegand, “H.264

hierarchical P coding in the context of ultra-low delay, low complexity

applications,” PCS 2010, pp. 146-149.

[10] B. Jung, and B. Jeon, “Adaptive slice-level parallelism for H.264/AVC

encoding using pre macroblock mode selection,” J. Visual

Communication and Image Representation, vol. 19(8), pp. 558-572,

2008.

[11] A. Koivula, M. Viitanen, J. Vanne, T. D. Hämäläinen, and L. Fasnacht,

“Parallelization of Kvazaar HEVC intra encoder for multi-core

processors,” in Proc. IEEE Workshop Signal Process. Syst., Hangzhou,

China, Oct. 2015, pp. 1-6.

[12] M.G. Koziri, D. Zacharis, I. Katsavounidis, and N. Bellas,

“Implementation of the AVS video decoder on a heterogeneous dual-

core SIMD processor,” IEEE Trans. Consumer Electronics, vol 57(2),

pp. 673-681, 2011.

[13] E. Monteiro, B. B. Vizzotto, C. M. Diniz, M. Maule, B. Zatt, S. Bampi,

“Parallelization of Full Search Motion Estimation Algorithm for Parallel

and Distributed Platforms,” International Journal of Parallel

Programming, vol. 42(2), pp. 239-264, 2014.

[14] OpenMP API. http://openmp.org

[15] P. Piñol, H. M. Gomis, O. M. L. Granado, and M. P. Malumbres, “Slice-

based parallel approach for HEVC encoder,” Journal of

Supercomputing, vol. 71(5), pp. 1882-1892, 2015.

[16] A. Rodríguez, A. González, and M. P. Malumbres, “Hierarchical
Parallelization of an H.264/AVC Video Encoder,” in
Proc. PARELEC 2006, pp. 363-368.

[17] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the

High Efficiency Video Coding (HEVC) Standard,” IEEE Trans. Circuits

Syst. Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

[18] X. Wang, L. Song, M. Chen, and J-J. Yang, “Paralleling variable block

size motion estimation of HEVC on multi-core CPU plus GPU

platform,” ICIP 2013, pp. 1836-1839.

[19] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview

of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.

Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[20] x265 HEVC encoder. http://x265.org.

[21] C. Yan, Y. Zhang, F. Dai, and L. Li, “Highly Parallel Framework for

HEVC Motion Estimation on Many-Core Platform,” DCC 2013, pp. 63-

72.

[22] Q. Yu, L. Zhao, and S. Ma, “Parallel AMVP candidate list construction

for HEVC,” VCIP 2012, pp. 1-6.

[23] Y. Zhao, L. Song, X. Wang, M. Chen, and J. Wang, “Efficient

realization of parallel HEVC intra encoding,” In Proc. ICME Workshops

pp. 1-6, 2013.

[24] L. Zhao, J. Xu, Y. Zhou, and M. Ai, “A dynamic slice control scheme

for slice-parallel video encoding,” ICIP 2012, pp. 713-716.

