An Optimization Approach for Multi-Domain Disaster Recovery

K. Liang1, M. Pourvali2, M. Naeini3, F. Xu4, S. Khan3, N. Ghani2

1University of New Mexico, 2University of South Florida, 3Texas Tech University, 4Cisco Systems Inc, 5North Dakota State University

Abstract: This paper develops a novel optimization scheme for multi-domain optical network protection under multiple probabilistic failures arising from large-scale disasters. The model is solved using an approximation approach and the results compared with some advanced heuristics.

OCIS codes: (060.4256) Networks, optimization; (060.4257) Networks, survivability; (060.4265) Networks, wave, routing

I. Introduction

Multi-domain backbone networks provide vital high-bandwidth connectivity for many new services running across wide geographic domains, e.g., such as on-line storage, content distribution, cloud, etc. As these services become more common, operators are being asked to provide a very high level of continuity, even under challenging disaster conditions. In particular, these occurrences can yield multiple spatially/temporally-correlated failures and include natural disasters, cascading power outages, and malicious \textit{weapons of mass destruction} (WMD) attacks.

Now various pre-provisioned protection schemes have been developed for multi-domain recovery, mostly based upon heuristic designs [1]. For example, hierarchical routing is commonly used to build abstract multi-domain views and compute skeleton primary/backup paths [2],[3]. Simpler decentralized strategies have also been proposed to achieve per-domain protection [4]. However these schemes only address isolated single (node, link) failures and are problematic for large disaster-type scenarios with multiple network node/link failures. Indeed, disaster recovery under such conditions is very challenging and is compounded by limited resource visibility between domains (due to privacy and scalability concerns). To address these concerns, [5] presents a novel “risk-aware” scheme that tries to lower joint path-pair failure probabilities for pre-defined probabilistic shared risk link group (p-SRLG) [6] regions. However, although this solution incorporates \textit{traffic engineering} (TE) efficiency concerns, it is still sub-optimal. Hence there is a strong need to develop more formal optimization models to bounds multi-failure performance.

In light of the above, this paper presents a novel integer non-linear programming (INLP) model for multi-domain disaster recovery. The solution extends upon the single-failure multi-domain protection optimization scheme in [7] by adding extensive new provisions for multi-failure p-SRLG regions. The overall optimization pursues several objectives—including throughput maximization, resource minimization, and risk avoidance—and the primary/backup routes are optimized at both the intra- and inter-domain levels, i.e., two-stage approach. This paper is organized as follows. Section II presents the hierarchical multi-objective optimization model along with a linear approximation. Section III then presents some performance evaluation results, as well as comparisons with the advanced heuristic scheme in [5]. Note that this work can also be generalized for “non-optical” bandwidth provisioning networks as well as emerging \textit{elastic optical networks} (EON).

II. Optimization Model

A new integer non-linear programming (INLP) optimization is presented for multi-domain lightpath protection under multiple probabilistic failures. The framework assumes a-priori demands and pre-specified failure risk regions. The solution also models realistic hierarchical routing setups, where domain state is compressed to provide global abstract topologies. Namely, full-mesh abstraction [1],[5] is used to reduce a domain to a mesh of links between its border nodes. All domains are transparent (all-optical) but have full wavelength conversion at the border nodes. This is a valid representation as most carriers use bit-level service level agreement (SLA) monitoring at boundary points. Overall, the optimization uses a two-stage approach, i.e., first computing skeleton primary/backup lightpath pairs over the global “abstract” topology and then resolving them over the individual domains, Fig. 1. This hierarchical approach mimics inter-domain heuristic schemes and provides a good reference. Although it is difficult to guarantee failure recovery for all multi-failure conditions, risk mitigation is still critical. Hence the solution tries to minimize joint path-pair failures while trying to control resource usages. Consider the requisite notation first.

A backbone network is defined with D domains, with the i-th domain represented by sub-graph, $G_i(V_i,L_i)$. Namely, here $V_i = \{v_{i1}, v_{i2}, \ldots\}$ is the set of nodes and $L_i = \{e_{ij}^i\}$ is the set of intra-domain links, e_{ij}^i interconnecting nodes v_{ij} and v_{ij}. Inter-domain links between the border nodes are also defined in the set $\{e_{ij}^{i}m\}$, where $1 \leq i,j \leq D$, and $i \neq j$. Using this, a global \textit{abstract} topology is defined by the graph $G(U,E)$. Namely, $U = \{v_j\}$ is the set of border nodes in all domains and $E = \{e_{ij}^{i}m\}$ is the set of global links, i.e., both physical inter-domain links ($e_{ij}^{i}m$ between domains i and j) and \textit{abstract} intra-domain links (e_{ij}^i in domain i). Without loss of generality, intra- and inter-domain link sizes are also set to C_1 and C_2 wavelength channels, respectively. Meanwhile, the p-SRLG model from [6] is used to specify a pre-defined set of mutually-exclusive stressor events, R, where each event $r \in R$ has an occurrence probability P_r, and $\Sigma_r P_r = 1$. Probabilistic failure regions are also defined for each stressor to model its impact regime, i.e., via non-zero conditional failure probabilities for each link e_{ij}^i within the geographic region of
event \(r \), i.e., \(p_r^{f,skm} \). As per [6], it is assumed that all link failures within a region (for stressor \(r \)) are independent. Finally, all user requests are denoted by the set \(N = \{ (s, d, r) \} \), where the \(n \)-th request has source node \(s_n \), destination node \(d_n \), and requested capacity \(r_n \) wavelengths. Some other variables are also defined here. Namely, \(f_n \) denotes the number of wavelengths allocated to the \(n \)-th request, \(x_n^{skm} \) denotes the number of wavelengths routed over link \(k_{km} \) for the primary path for request \(n \), and \(y_n^{skm} \) denotes the number of wavelengths routed over link \(k_{km} \) for the backup path for request \(n \). Assuming single-wavelength requests, i.e., \(r_n = 1 \), all \(x_n^{skm} \) and \(y_n^{skm} \) become binary variables. Finally, the vectors \(x = \{ x_n^{skm} \} \) and \(y = \{ y_n^{skm} \} \) are used to denote the primary and backup path routes for a request.

Now the conditional failure probability of a primary path \(x \) given stressor \(r \), \(F(r, x) \), is computed as a product of link failure probabilities, Eq. 1a (and similarly \(F(r, y) \) for the backup path \(y \), Eq. 1b). Since routes \(x \) and \(y \) are link-disjoint, their conditional path-pair failure probability is also given by the product term in Eq. 2. Leveraging the above, the first optimization stage computes skeleton primary/backup path-pairs over \(H(U,E) \) using the multi-objective function in Eq. 3. Namely, this function comprises of three weighted components to maximize throughput \((F_1) \), minimize resource usage \((F_2) \), and minimize joint failure probability/risk \((F_3) \), i.e., \(\omega_1, \omega_2, \) and \(\omega_3 \) are arbitrary weighting factors. Furthermore, additional equations are also introduced to bound the solution, i.e., Eqs. 4 and 5 for flow continuity, Eq. 6 for link-disjointness, Eq. 7 for link capacity bounds, and Eqs. 8-10 for binary conditions.

\[
F^c(x, y) = \prod_{e \in E} (1 - p_{e, p, y}) \quad F(x, y) = \prod_{e \in E} (1 - p_{e, x, y})
\]

(1a,b)

\[
F(x, y) = (1 - p_{x, y})
\]

(2)

\[
F = \sum_{(j,m) \in R} \sum_{(j,m) \in E} x_{km}^{ij} - \sum_{(j,m) \in E} \sum_{(j,m) \in E} y_{km}^{ij} = \begin{cases} f_n; & \text{if } v_n = s_n \\ -f_n; & \text{if } v_n = d_n : n \in N \\ 0; & \text{otherwise} \end{cases}
\]

(3)

\[
\sum_{(j,m) \in R} \sum_{(j,m) \in E} x_{km}^{ij} + \sum_{(j,m) \in E} y_{km}^{ij} \leq f_n : n \in N, e_{km}^{ij} \in E
\]

(4)

\[
\sum_{(j,m) \in R} \sum_{(j,m) \in E} x_{km}^{ij} + \sum_{(j,m) \in E} y_{km}^{ij} \leq C_2 : n \in N, e_{km}^{ij} \in E
\]

(5)

\[
x_{km}^{ij} \in \{0,1\} : n \in N, e_{km}^{ij} \in E
\]

(6)

\[
y_{km}^{ij} \in \{0,1\} : n \in N, e_{km}^{ij} \in E
\]

(7)

\[
f_n \in \{0,1\} : n \in N, e_{km}^{ij} \in E
\]

(8)

\[
f_n \in \{0,1\} : n \in N, e_{km}^{ij} \in E
\]

(9)

\[
f_n \in \{0,1\} : n \in N, e_{km}^{ij} \in E
\]

(10)

Figure 1: Two-stage optimization approach

Skeleton paths generated in the first optimization stage specify all traversed domains. These results drive the second optimization stage to expand the local intra-domain sub-path routes, i.e., “all-optical” segments. The same multi-objective function in Eq. 3 is re-used here at the local domain, i.e., by defining optimizations for \(G(V,L') \). After local sub-path optimization is complete, most-used (MU) wavelength selection is used to select wavelength channel colors, i.e., as it known to give lower blocking [7]. Finally, combining intra-domain segments (with the same request index) with their respective inter-domain links in \(H(U,E) \) gives the completed end-to-end lightpaths pairs.

However, most INLP problems pose high computational complexity and are difficult to solve for generalized network scenarios. Hence a reduced integer linear programming (ILP) approximation is also developed here. Namely, the joint (conditional) failure probability expression in Eq. 2 is expanded and all its higher-order product terms (with three or more probabilities) are removed, i.e., assuming low conditional failure probabilities, \(p_r^{f,skm} \). This results in a modified/simplified expression for the (aggregate) joint risk function, \(F_3 \), as follows:

\[
\text{Min } F = w_1 \sum_{n \in N} (1 - f_n) + w_2 \sum_{n \in N} \sum_{e_{km}^{ij} \in E} (x_{km}^{ij} + y_{km}^{ij}) + \sum_{n \in N} \sum_{r \in R} \sum_{e_{km}^{ij} \in E} \sum_{e_{km}^{ij} \in E} \pi_{e_{km}^{ij}, e_{km}^{ij}, e_{km}^{ij}} x_{km}^{ij} y_{km}^{ij}
\]

where \(x_{km}^{ij} \) is a new binary variable introduced to replace the product of two binary variables \(x_{km}^{ij} y_{km}^{ij} \). Overall, the above ILP formulation is much more scalable and also more amenable to existing LP solver packages.

III. Performance Evaluation

The optimization solution is analyzed using a 6-domain network with 25 inter-domain links and 4 equiprobable p-SRLG failure regions, Fig. 3. Inter-domain links have double the wavelength counts of intra-domain links \((C_1 = 8/C_2 = 16, C_1 = 16/C_2 = 32 \text{ channels})\), and the ILP approximation is solved using a combination of the PuLP
modeler and the GPLK solver. The respective objective function weights in Eq. 3 are also set to \(\omega_1=6, \omega_2=0.0001, \) and \(\omega_3=1, \) i.e., to emphasize throughput maximization. Furthermore, all tests are done for mid-range link failure probability values, i.e., \(p'_{ijkl}=0.5. \) Performance is also compared to the heuristic multi-failure recovery scheme in [6], which jointly computes link-disjoint path-pairs to lower failure probability and TE cost. These tests are done using OPNET Modeler® simulation, and requests are processed in random sequential order (infinite holding times).

The number of successful setups is first plotted in Fig. 4 for differing random batch sizes. At lower loads, both the heuristic and optimization schemes give very competitive results, as resource contention is low. However, for medium-high load regimes, the optimization scheme does significantly better, yielding almost 50% more setups. The number of non-failed demands (i.e., unaffected primary and/or backup routes) is also plotted in Fig. 5. Again, the ILP solution gives much better survivability, especially under more challenging heavy load conditions, e.g., almost 35% less failures for increase link sizes. Finally, the average primary/backup hop counts are also shown in Fig. 6 and indicate slightly higher values with the optimization strategy, i.e., 10-25% (note that similar findings are also observed for single-failure protection optimization [7]). In addition, the ILP results also show a slight decline in resource usage at higher loads. Note that the above tests are also re-run for lower/higher link failure probabilities, i.e., \(p'_{ijkl}=0.2 \) and 0.8, and findings re-confirm optimization gains in term of lower blocking and non-failed requests.

This paper presents a novel optimization scheme to protect multi-domain lightpath connections under probabilistic multi-failure conditions. This necessitates a non-linear formulation, which is then solved using a linear approximation approach to provide notably-improved bounds on blocking and failure recovery rates.

References

