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Abstract Designing real-time systems is a challenging task and many conflicting is-
sues arise in the process. Among them, the most fundamental one is the adjustment
of appropriate values for task parameters such as task periods, deadlines, and compu-
tation times that directly influence the system feasibility. Task periods and deadlines
are generally known at design stage and remains fixed throughout, however, task
computation times fluctuates significantly. For a better quality of service or higher
system utilization, higher task computation values are required, while this flexibility
comes at the price of system infeasibility. To the best of our knowledge, no optimal
solution exists for extracting the optimal task computation times in a given range so
that the overall system remains feasible under a specific scheduling algorithm. In this
paper, we present a generalized bound on the task schedulability defined as a nonlin-
ear inequality hi ≤ 0 in the space of the execution times ci . Based on this bound, the
adjustment problem of tasks execution times, which determines the optimum ci for a
better system performance while still meeting all temporal requirements, is addressed
by solving the standard nonlinear constrained optimization problem. Simulations on
synthetic task sets are presented to compare the performance of our work with the
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most celebrated result, i.e., LL-bound by Liu and Layland in (J. ACM 20(1):40–61,
1973).

Keywords Real-time systems · Fixed-priority scheduling · Feasibility analysis ·
Nonlinear programming

1 Introduction

A real-time task τi is an executable entity of work that, at a minimum, is character-
ized by a worst-case execution time ci (WCET) [26] and a time constraint [27]. In
practical systems, ci fluctuates in the range ci ∈ [cmin

i , cmax
i ], while on the theoretical

side to guarantee reliable system behavior in worst case scenario, ci is kept maxi-
mum, i.e., ci = cmax

i . A typical timing constraint of a real-time task is the deadline di

(ci ≤ di), which represent the time before that a task should complete its execution
without causing any damage to the system [10]. Similarly, an instance/job of a task
is generated every pi units of time, called time period.

Before applying to the time critical applications, real-time systems must be de-
signed and validated carefully to avoid undesired consequences [13, 16, 17]. De-
signing a real-time system [18] is a challenging task and two questions need to be
addressed at this stage, i.e., (i) what criteria to use for adjusting task parameters, and
(ii) which scheduling algorithm to be incorporated, so that maximum system utiliza-
tion is achieved [1, 3]. In hard real-time systems, running the time critical applications
with a scheduling algorithm require predictable behaviors under all possible circum-
stances. Even if a deadline has to be missed, it is better to miss the deadline of a less
important task than missing the deadline of a critical task. As far as predictability is
concerned, among available scheduling algorithms, fixed priority scheduling is the
choice of modern real time systems due to its simplicity and applicability [5, 8, 11,
12, 23] and it is always known in advance that which task will miss the deadline
when the system is overloaded. The most mature scheduling algorithm in static pri-
ority scheduling class is the rate-monotonic (RM) scheduling algorithm which is the
focus of this paper. Task priorities in RM are based on task periods, i.e., the larger is
the task period, higher is the task priority and vice versa.

Let Γ = {τ1, . . . , τn} denotes a periodic task system, where each task τi (i =
1,2, . . . , n) is represented by three essential parameters (ci,pi, di). For each task τi ,
its utilization is defined as: Ui = ci/pi . We define a cumulative utilization Ulub of
periodic task system Γ as:

Ulub =
n∑

i=1

ci

pi

. (1)

Based on the task periods and deadlines, there are three major classes of task mod-
els [11]:

• Implicit-deadline: The constraint for each task τi ∈ Γ is di = pi .
• Constrained-deadline: The constraint for each task τi ∈ Γ is di ≤ pi .
• Arbitrary-deadline: For any task τi ∈ Γ , di and pi is unrelated.



Optimal task execution times for periodic tasks using nonlinear

The most common case is the implicit-deadline systems [29]. Since task period are
usually set by the system requirement, deadlines, and execution times can be mod-
ified in order to improve system utilization. Recently, a significant contribution is
made on sensitivity analysis [6, 14, 15], based on exact conditions. In contrast, the
aim of this work is to provide a generalized bound for a periodic task that can be
solved with standard nonlinear constrained optimization technique for attaining opti-
mal computation demand for a given task in the context of fixed-priority preemptive
uniprocessor scheduling. In the rest of the paper, the term generalized bound and
polylinear bound are used interchangeably, unless stated otherwise.

The fundamental issue investigated during the past thirty years for the traditional
rate monotonic scheduling algorithm can be described as: Given a task set Γ , de-
termine whether the set Γ is RM feasible? Two questions arise from this problem
formulation.

• P-1: If the answer is YES, then how much freedom in terms of CPU utilization do
we have to increase the value of the parameter ci in order to have a better system
performance while still satisfying schedulability constraints?

• P-2: If the answer to the question posed by RM schedulability is NO, then how to
adjust/lower the parameter ci so that the new task set becomes schedulable?

Mainly, schedulability tests come up with a straight YES or NO answer, however,
techniques do exist where the above questions are addressed with sensitivity analysis
[6, 14]. Authors in [14, 15] also treats system with utilization over 100% by using
the concept of slack which allows tasks computation times to be adjusted so that the
system becomes schedulable or higher system utilization is achieved. In this paper,
we address the same issue by applying optimization techniques. We are focusing on
transforming the infeasible task set into feasible and the feasible one into the system
that results in higher system utilization. The prior work of [32] enables us to represent
the long list of inequalities (Eq. 9) by a single inequality, and thus provide a solution
for obtaining optimal computation times for the tasks according to RM scheduling
policy. This formulation is referred to as the task execution time ci adjustment prob-
lem (C-AP), throughout this paper.

C-AP is of significance importance in the design phase of real-time and embed-
ded systems; in application areas such as decision-making, database query process-
ing and numerical solutions, where the task execution time varies greatly depending
upon the execution precision. In such applications, the longer a task takes to exe-
cute, the better are the results produced. Similarly, the tasks execution times vary
significantly with different hardware configurations, and hence the total execution
cost is reduced by efficiently utilizing the available hardware resources. This vari-
ation in the execution times greatly influence the feasibility of the systems and no
optimal solution exists in literature prior to this work for obtaining the best possible
values.

There are generally two solutions to formulate the above schedulability problems
(P-1 and P-2). The first is based on the sufficient conditions [4, 22, 23] such as the
LL-bound, proposed by Liu and Layland in [22]. The LL-bound says that a task set
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Γ consisting of n tasks is RM feasible if

Ulub(n) ≤ n
(
21/n − 1

)
. (2)

Similarly, another recently proposed bound, H-bound has higher acceptance ratio
than LL-bound. According to H-hound, the task set is RM-feasible if

n∏

i=1

(Ui + 1) ≤ 2. (3)

The second solution is based on the necessary and sufficient condition [4, 6, 21,
24]. The first solution has two disadvantages, (i) the best value of the utilization factor
cannot exceed the bounds, and (ii) it can result in the pessimistic answer, as the con-
dition is only sufficient. The second solution is strongly recommended, however, the
general algorithms developed for solving the optimization problem cannot be directly
applied to it [5, 20] because of the long list of inequalities that are not only linked
with logical AND (at set level) relationship but also through logical OR relationship
(at task level) [5].

Considering the case of fixed values of pi , this work inherits the fundamental idea
of inequality and optimization techniques proposed in [31, 32]. The list of inequali-
ties at task level is converted into a single inequality with the help of a mathematical
transformation, and C-AP is addressed by solving the standard nonlinear program-
ming problem.

The main contributions are as follows:

• We present a polylinear bound on task schedulability given by an inequality that
helps to apply the optimization techniques to solve the problems discussed in
[5, 20].

• C-AP is formulated as a nonlinear programming problem. Specifically, three dis-
tances from a point (c1, c2, . . ., cn) to the schedulability boundaries are mainly
investigated: (i) by how much amount any execution time ci can be increased/
decreased and keeping/reaching the schedulability for task τi , (ii) by how much
amount all the execution times can be scaled (up or down) to hit the schedulability
boundary, and (iii) by how much amount all tasks execution times can be varied
while respecting schedulability region for the task set.

The advantage of using the optimization technique for solving the C-AP is three-
fold. First, the schedulability test problem becomes a special case of the C-AP when
the task execution time ci is fixed. Secondly, the C-AP is converted into a typical
optimization problem concerning the minimization or maximization of a function,
subject to different types of constraints (equality or inequality) in operation research,
which can be solved by any mature algorithm for an efficient solution. Third, the
solution to the problem is not only feasible, but also optimal. Any desired character-
istics such as processor utilization, reward function, or the error cost function can be
designed as an objective function.

The rest of the work is organized as follows. Section 2 presents the generalized
bound on task schedulability with the help of a mathematical transformation. In



Optimal task execution times for periodic tasks using nonlinear

Sect. 3, the problem of task computation times adjustment is represented as a clas-
sical nonlinear constrained optimization problem. Experimental results are given in
Sects. 4 and 5. Finally, conclusions are stated in Sect. 6.

2 A generalized bound on task schedulability

Rate Monotonic Analysis (RMA), in its exact form, is the classical way of determin-
ing RM task feasibility. The following brief discussion provides the foundation for
our work.

The workload wi(t) constituted by τi at time t consists of its execution demand ci

as well as the interference it encounters due to higher priority tasks from τi−1 to τ1
and can be expressed mathematically as

wi(t) = ci +
i−1∑

j=1

⌈
t

pj

⌉
cj . (4)

A periodic task τi is feasible if we find some t ∈ [0, di] satisfying

min
0<t≤pi

(
wi(t) ≤ t

)
. (5)

In other words, task τi completes its computation requirements at time t ∈ [0,pi], if
and only if the entire request from the i − 1 higher priority tasks and computation
time of τi is completed at or before time pi . As t is a continuous variable, there are
infinite numbers of points to be tested.The first attempt to limit the infinite number of
points in interval t ∈ [0, t] is made in [21]. The authors show that wi(t) is constant,
except at finite number of points, where tasks are released, called RM scheduling
points. Consequently, to determine whether τi is schedulable, wi(t) is computed only
at multiples of τi ≤ τj , 1 ≤ j ≤ i. Specifically, let

Si =
{
apb

∣∣∣ b = 1, . . . , i; a = 1, . . . ,

⌊
pi

pb

⌋}
. (6)

We have the following fundamental theorem to determine whether an individual task
is feasible or not.

Theorem 1 [21] Given a set of n periodic tasks τ1, . . . , τn, τi can be feasibly sched-
uled for all tasks phasings using RM iff

min
t∈Si

wi(t)

t
≤ 1. (7)

With above theorem, wi(t) is needed to be analyzed only at a finite number of
points. The time demand wi(t) for task τi is tested at all scheduling points in the
set Si .
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In the following, the schedulability of task τi is ensured by solving an inequality
gi(c1, c2, ci) ≤ 0. The implicit function gi ≤ 0 is called the generalized bound of τi .
Extending the work in [5, 6, 21], the following discussion leads us to the generalized
bound on task schedulability represented as a polylinear surface in the space of the
task execution times ci .

Definition 1 (Fi) The schedulability region Fi is defined as:

Fi(c1, c2, . . . , ci) = {
(c1, c2, . . . , ci) | τi is schedulable by RMA,

cj ≥ 0, j = 1,2, . . . , i
}
. (8)

Definition 2 (Generalized bound) The generalized bound of task τi is an inequality
gi(c1, c2, . . ., ci) ≤ 0 such that:

• Any point in the region Fi satisfies gi(c1, c2, . . ., ci) ≤ 0.
• Any point violates gi(c1, c2, . . ., ci) > 0 is not in the region Fi.

2.1 Schedulability region

According to the Definition 1, region Fi which guarantees the schedulability of τi is
obtained with the following theorem.

Theorem 2 The schedulability region Fi for task τi is given by:

Fi(c1, c2, . . . , ci) =
{

(c1, c2, . . . , ci)
∨

t∈Si

i∑

j=1

⌈
t

pj

⌉
cj − t ≤ 0,

cj ≥ 0, j = 1,2, . . . , i

}
(9)

where “
∨

” denotes logic OR relationship.

Proof It directly follows from Eqs. 7 and 8 which defines Fi . �

It should be observed that Eq. 9 consist of a set of inequalities with logic OR
relations. The question arises here is how to express such a list of inequalities with
a single inequality. In the following, a mathematical transformation is proposed to
remove logic OR relationships among the inequalities, which enables us to derive the
generalized bound.

2.2 Construction of generalized bound

Lemma 1 [32] Suppose g1 ≤ 0, g2 ≤ 0, . . . , gm ≤ 0 are constraints with logic OR
relationships, then ∀j = 1, . . . ,m, g1 ≤ 0 ∨ g2 ≤ 0 ∨ · · · ∨ gm ≤ 0 can be determined

by (�v − ∑m
j=1 (

√
g2

j − gj )) ≤ 0 as a small positive value �v → 0.
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By Lemma 1, the constraints with logic OR relationships are turned into one gen-
eral inequality.

Example 1 An equality x ≤ 3 and inequalities x ≥ 5 can be determined by

�v − ((√
(x − 3)2 − (x − 3)

) + (√
(5 − x)2 − (5 − x)

)) ≤ 0.

Note that in Lemma 1, g1 = 0∨g2 = 0∨· · ·∨gm = 0 is just barely determined by

(�v − ∑m
j=1 (

√
g2

j − gj )) ≤ 0 because when �v → 0+, we have that ∃j , gj → 0−.

From Lemma 1, we have the following theorem.

Theorem 3 The schedulability region Fi can be determined by:

Fi(c1, c2, . . . , ci)

=
{

(c1, c2, . . . , ci)

∣∣∣ �v −
ki∑

j=1

(√√√√
(

i∑

m=1

⌈
Sij

pm

⌉
cm − Sij

)2

−
(

i∑

m=1

⌈
Sij

pm

⌉
cm − Sij

))
≤ 0, cm ≥ 0, m = 1,2, . . . , i

}
(10)

where Sij is the j th element of Si , ki is the number of elements in Si and cm ≥ 0
(m = 1,2, . . . , i).

Proof It directly follows from Lemma 1 and Eq. 10 which defines Fi. �

Theorem 4 The generalized bound of a task τi can be determined by

�v −
ki∑

j=1

(√√√√
(

i∑

m=1

⌈
Sij

pm

⌉
cm − Sij

)2

−
(

i∑

m=1

⌈
Sij

pm

⌉
cm − Sij

))
≤ 0. (11)

Proof It directly follows from Theorem 3 and Definition 2. �

Example 2 Consider a set of 3 tasks with periods p1 = 3, p2 = 4, and p3 = 5. From
Eq. 9, we have

F3 = {
(c1, c2, c3) | c1 + c2 + c3 ≤ 3 ∨ 2c1 + c2 + c3 ≤ 4 ∨ 2c1 + 2c2 + c3 ≤ 5,

cj ≥ 0, j = 1,2,3
}
.
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The generalized bound of task τ3 is given by

�v − (√
(c1 + c2 + c3 − 3)2 − (c1 + c2 + c3 − 3)

+
√

(2c1 + c2 + c3 − 4)2 − (2c1 + c2 + c3 − 4)

+
√

(2c1 + 2c2 + c3 − 5)2 − (2c1 + 2c2 + c3 − 5)
)

≤ 0.

One advantage of using an inequality gi(c1, c2, . . . , ci) ≤ 0 to express the task gen-
eralized bound is that other existing utilization bounds can be considered as a special
case of the generalized bound, the other one is to develop a nonlinear programming
formulation for solving C-AP.

2.3 Representation of the generalized bound

For better understanding and description, we show that the generalized bound can
be represented as a polylinear surface in the task execution times space, denoted as
the c-space from now on. In such a space, a point c = {c1, c2, . . . , cn} represents a
periodic task set whose tasks execution times are c1, c2, . . . , and cn, respectively.

Lemma 2 Given a line g(x, y) = ax + by + c = 0 in a 2-D space where g(x, y) is
an implicit function of x = (x, y) ∈ R2. The region below the line can be represented
as g(x, y) < 0 and the region above the line can be represented as g(x, y) > 0 when
a > 0 and b > 0.

Proof Suppose a point x = (x1, y1) is on the line, then it satisfies ax1 + by1 + c = 0.
Suppose a point y = (x2, y2) is below the line, that means x1 = x2, y1 > y2, then we
have ax2 + by2 + c = ax1 + by2 + c < ax1 + by1 + c = 0. This proves that the region
below the line can be represented as g(x, y) < 0 when a > 0 and b > 0. Similarly,
we can prove that the region above the line can be represented as g(x, y) > 0 when
a > 0 and b > 0. �

The meaning of Lemma 2 is illustrated in Fig. 1: only one inequality can express
three regions, (a) on the line, (b) over the line, and (c) below the line. In a broader

Fig. 1 Lemma 2 interpretation
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perspective, it can be divided into two regions, Region-1: (g(x, y) ≥ 0) and Region-2:
(g(x, y) < 0). Since the feasibility problem has also two regions, i.e., feasible and
infeasible, Lemma 2 can be easily extended to accommodate feasibility phenomena,
which allows us to present the generalized bound of a task τi :

Theorem 5 The generalized bound of task τi can be represented by a polylinear
surface in the c-space.

Proof The generalized bound of task τi is the bound of region Fi defined by Eq. 9.
Note that all the schedulability constraints of task τi are linear. Since the task periods
pi are fixed, each constraint is represented by an i-dimensional plane (hyperplanes in
higher dimensions) in the c-space. The collection of all the i-dimensional planes con-
struct an i-dimensional polylinear surface intersecting each axis in 1. Points below
the i-dimensional polylinear surface represent that task τi is RM feasible, whereas
the region above the surface shows infeasible task τi . Hence, the generalized bound
of task τi can be represented by a polylinear surface in the c-space. �

In the following, we refer to the generalized bound of tasks as the polylinear bound
or P-bound for short, as it can be represented by a polylinear surface in the c-space.
It should be observed that the P-bound can also be represented as a polylinear surface
in the task utilization space because ci is proportional to Ui .

Considering Example 2, the region F3 (Eq. 9) is delimited by three planes, which
constructs a 3D polylinear surface in the c-space, as depicted in Fig. 2. Thus, the
generalized bound of task τ3 is represented as this 3D polylinear surface. Similarly,
Fig. 3 shows the LL bound, the hyperbolic bound and the P-bound in the task uti-
lization space for n = 2. The LL bound is represented by a line intersecting both axis
in Ulub(2) = 2(

√
2 − 1). The hyperbolic bound is described as a hyperbola where

the P-bound is a polyline. The hyperbolic bound and the P-bound intersect each axis

Fig. 2 Polylinear surface
illustration for a task set with
p1 = 3, p2 = 4, p3 = 5



N. Min-Allah et al.

Fig. 3 Schedulability bounds
for RM in the utilization space

in 1. The schedulability region below the P-bound is larger than that below the hyper-
bolic bound which is larger than that below the LL bound. It can be seen that none of
RM-bounds (LL and H-bound)) can exceed the EDF-bound (U = 1 in Fig. 3) [22],
which is understandable, as EDF is the optimal scheduling algorithm for any implicit
deadline system. The figure is sketched for n = 2, it can be easily concluded that
region below both the LL-bound and H-bound will reduce with larger n, however,
P-bound (due to polylinear surface) in Fig. 3 would be definitely more advantageous
over these solution, as it is exact condition.

3 Task execution times adjustment based on the P-bound

In this section, we show how the task execution times adjustment problem can be
integrated with the P-bound. We assume that task periods are fixed and the tasks exe-
cution times can be well tuned to improve the system performance. In a very general
framework, ci is the design variable to represent the possible choices of the designer
at the stage of the system design, the P-bound is the constraints to ensure the task
schedulability, and the objective function is designed as a measure of the overall sys-
tem performance. Consequently, C-AP can be formulated as nonlinear programming
optimization problems, which enables us to determine the optimum ci by applying
the classical nonlinear optimization approaches.

3.1 Modifying a task

We are interested in knowing the amount of execution time variation �ck to task τk

such that the generic task τi remains schedulable while maximizing the processor
utility. Two situations arise here:

• If i < k, the task τi is not affected by any variation �ck because it has a higher
priority than τk .
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Fig. 4 Task execution time
adjustment for p2 < 2p1

• If i ≥ k, we obtain that

Maximize: U1 + U2 + · · · + Ui + �ck/pk

Subject to {task τi is schedulable}. (12)

The objective function can be replaced by �ck since U1, U2, Ui , and pk are all
fixed. Further, applying the P-bound ensuring the schedulability of task τi . The above
optimization problem can be written more formally as:

Maximize �ck (13)

�v −
ki∑

j=1

(√√√√√√

(
i∑

m=1
m 
=k

⌈
Sij

pm

⌉
cm +

⌈
Sij

pk

⌉
(ck + �ck) − Sij

)2

−
(

i∑

m=1
m 
=k

⌈
Sij

pm

⌉
cm +

⌈
Sij

pk

⌉
(ck + �ck) − Sij

))
≤ 0. (14)

In order to understand the formulation of P-bound for modifying one task, we use
a simple example in the task U -space for illustration. In Fig. 4, assuming a task τ2 is
infeasible with (U1,U2) (representing as point P1 in the U -space). Our concern is to
make task τ2 schedulable by adjusting the execution time of task τ1. The best solution
is to move the given point P1 to the point P2 on the polyline where task τ2 becomes
schedulable. It is easy to see that the solution is better than that obtained using the
H-bound, which is represented as point P3 in the U -space, i.e., �U1 is the minimum
distance from the given infeasible point to the P-bound, as �U1 = �c1/p1.

Example 3 Consider task set Γ = {τ1, τ2} with c1 = 15,p1 = 30 and c2 = 20, p2 =
40, where task τ2 is unschedulable by RMA. By solving problem 13, we get c1 = 10,
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which means that if the execution time of τ1 is decreased from 15 to 10, task τ2
becomes RM-feasible.

3.2 Scaling execution times of the task set

To reduce energy consumption of the real-time system, dynamic voltage scaling tech-
niques [9] are being applied to real-time scheduling [25], where focus is made on
lowering the system speed so that no deadline is ever missed. Suppose we have a
schedulable task set and we want to compute the minimum processor speed, denoted
by α, such that the task set is still schedulable at that speed α. The speed reduction
can be considered as scaling the execution times ci by a factor α. If we replace all the
ci with those obtained after a speed modification of α, the P-bound for τi becomes:

�v −
ki∑

j=1

(√√√√
(

i∑

m=1

⌈
Sij

pm

⌉
cm

α
− Sij

)2

−
(

i∑

m=1

⌈
Sij

pm

⌉
cm

α
− Sij

))
≤ 0. (15)

We can now find the minimum speed α, which is given by:

Minimize α (16)

Subject to Inequality 15, ∀i = 1, . . . , n. (17)

The constraints ensure that all the tasks are schedulable. The above optimization
problem is also applicable to the cases when we have an unschedulable task set and
we want to compute the minimum processor speed α, such that the task set becomes
schedulable at that speed.

Example 4 Consider a set of four tasks with execution times c1 = 10, c2 = 10, c3 =
10, and c4 = 10, and periods p1 = 50, p2 = 80, p3 = 120, and p4 = 200. The task set
is schedulable by RMA since Ulub = 0.4583 is less than the LL-bound. By solving the
above problem, we get c1 = 20, c2 = 20, c3 = 20, and c4 = 20 and the total utilization
equals 0.9166 at full speed. On the other hand, the original task set remains feasible
even if the processor speed is reduced by half.

Example 5 Consider a set of four tasks with execution times c1 = 30, c2 = 30, c3 =
30, and c4 = 30, and periods p1 = 80, p2 = 120, p3 = 150, and p4 = 210. We
have Ulub(n) = 0.9679. From LL-bound, the task set is unschedulable by RMA. By
applying our technique, we get that a schedulable set when the processor speed is
increased by a factor of 8/7. In other words, the computation times are adjusted as
c1 = c2 = c3 = c4 = 26.25 and the system schedulability is guaranteed.

3.3 Finding a generalized schedulable task set

Among many designing factors, the most vital issue is of getting exact value for how
long the task will take at run-time. Considering many practical problems such as
the source code, compiler optimization, system architecture, operating system, and
so on, the WCET can only be estimated. To make the things worst, the time needed
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to find WCET of tasks depends also on the machine architectures which is again a
complicated activity (interested reader is referred to [2, 19, 28]). The point that we
are tying to make here is that even an estimate on WCET is tedious. Assuming a
good estimate is made of the source code, there is still uncertainty involved at run
time due to data cache, etc. Another extreme case would be the best case execution
time (BCET). The difference between BCET and WCET can be as large as 80% [30].
The P-bound can be used in this situation, by first putting ci = BCET and then if
the task τi is schedulable the value of ci can be increased such that ci = WCET . In
case the task is infeasible, the code for τi can be readjusted and making WCET low-
ered accordingly. Sometimes, a task may have primary and alternative version of the
same task. The primary version has a higher WCET than the alternative one. In such
situations, completing either version results in the task being completed. Though the
primary version offering high quality of service is preferred, alternative version of the
task with acceptable quality may be executed when overload occurs. Another rem-
edy to infeasibility is dividing ci into two parts (i) Mandatory (mi) and (ii) Optional
(oi) [28]. Tasks of these types are known as increased reward increased service (IRIS)
tasks; the longer they run, the better would be their output results. Using the P-bound,
initially put ci = mi and if the task is still feasible, the value of ci can be increased
by adding oi , until the system becomes barely schedulable, i.e., ci = mi + xi , where
0 ≤ xi ≤ oi .

Here, we extend the above conditions to a more general one by assuming that the
execution times ci (i = 1,2, . . . , n) vary within a range, i.e., they are described by
cmin
i ≤ ci ≤ cmax

i . The two issues namely, P-1 and P-2, can be combined into a single
optimization problem which can be formulated formally as follows: Given a set of n

periodic tasks Γ = {τ1, τ2, . . . , τn} where the task execution time ci varies in a range
with a lower bound cmin

i and an upper bound cmax
i , and pi is known a priori, find a set

of the execution times ci under the RM schedulability constraints such that a system
performance index is maximized. Suppose the task system is optimal in the sense
that the total processor utilization is maximized. Thus, the extended problem can be
expressed as a maximization problem:

Maximize f (c1, c2, . . . , cn) (18)

Subject to Eq. 15 ∀i = 1, . . . , n, (19)

cmin
i ≤ ci ≤ cmax

i . (20)

In the following example, we show that the P-bound always produce higher task
computation times than the LL-bound and H-bound.

Example 6 Suppose we have a system where the highest priority task τ1 is an inter-
rupt handler. τ1 has a period p1 = 12 and a worst-case execution time c1 = 1. On top
of this task, there are two tasks: the higher priority one has a period p2 = 30. The
other one has a period p3 = 50. The two tasks are approximation algorithms. The
longer they run the better are the results. The total approximation error of the two
algorithms is given by

f (c2, c3) = p2/c2 + p3/c3 (21)
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which is then inversely proportional to the execution times ci . The problem is to find
the values of c2 and c3 such that the total error is minimized and all the tasks are
schedulable.

The schedulability of τ1 is ensured because c1 < p1.
The P-bound of τ2 is given by

�v − (√
(c1 + c2 − 12)2 − (c1 + c2 − 12)

+
√

(2c1 + c2 − 24)2 − (2c1 + c2 − 24)

+
√

(3c1 + c2 − 30)2 − (3c1 + c2 − 30)
)

≤ 0. (22)

Further, we have

�v − (√
(c2 − 11)2 − (c2 − 11) +

√
(c2 − 22)2 − (c2 − 22)

−
√

(c2 − 27)2 − (c2 − 27)
)

≤ 0. (23)

The P-bound of τ3 is given by

�v − (√
(c1 + c2 + c3 − 12)2 − (c1 + c2 + c3 − 12)

+
√

(2c1 + c2 + c3 − 24)2 − (2c1 + c2 + c3 − 24)

+
√

(3c1 + c2 + c3 − 30)2 − (3c1 + c2 + c3 − 30)

+
√

(3c1 + 2c2 + c3 − 36)2 − (3c1 + 2c2 + c3 − 36)

+
√

(4c1 + 2c2 + c3 − 48)2 − (4c1 + 2c2 + c3 − 48)

+
√

(5c1 + 2c2 + c3 − 50)2 − (5c1 + 2c2 + c3 − 50)
)

≤ 0. (24)

Also, we have

�v − (√
(c2 + c3 − 11)2 − (c2 + c3 − 11)

+
√

(c2 + c3 − 22)2 − (c2 + c3 − 22)

+
√

(c2 + c3 − 27)2 − (c2 + c3 − 27)

+
√

(2c2 + c3 − 33)2 − (2c2 + c3 − 33)

+
√

(2c2 + c3 − 44)2 − (2c2 + c3 − 44)

+
√

(2c2 + c3 − 45)2 − (2c2 + c3 − 45)
)

≤ 0. (25)
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Fig. 5 Optimal computation
times for the task set in
Example 6

Therefore, the optimization problem can be expressed as follows:

Minimize f (c2, c3) = 30/c2 + 50/c3 (26)
Subject to Inequality 23 and 25 (27)

All the points below the P-bound are feasible, however, the solution obtained
through our formulation is optimal. Be solving problem 26, we get c2 = 11.7624,
c3 = 21.4751 and f (c2, c3) = 4.8788. Figure 5 depicts the P-bound of τ3 given by
Eq. 25 in the c-space. The curves qualitatively show the cost function of Eq. 25, and
the black dot is the solution to the problem 26. We now highlight the supremacy of our
technique over existing bounds with the same example. It can be easily seen that the
task is RM schedulable by P-bound with modified task computation times (c1 = 1,
c2 = 11.76, and c3 = 21.47). In contrast, both LL-bound and H-bound fail; compu-
tation times of tasks has to be further reduced to satisfy these bound. In other words,

n∑

i=1

ci

pi

≤ n
(
21/n − 1

)
,

1

12
+ 11.76

30
+ 21.47

50
≤ 3

(
21/3 − 1

)
,

0.904 ≤ 0.779

(28)

which shows LL-bound fails with modified computation times derived by P-bound.
Similarly,

n∏

i=1

(
1 + ci

pi

)
≤ 2,

(
1 + 1

12

)
×

(
1 + 11.76

30

)
×

(
1 + 21.47

50

)
≤ 2,

(2.13) ≤ 2.

(29)

Again, H-bound also fails here.
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Table 1 Improvement over
LL-bound for
Ulub ≤ n(21/n − 1)

Number of tasks Average processor utilization

U-LL (%) U-PB (%) Improvement (%)

3 77.98 86.38 8.40

5 74.35 81.35 7.00

10 71.77 78.19 6.42

20 70.53 76.18 5.65

30 70.12 76.08 5.96

40 69.92 75.88 6.08

50 69.80 75.88 6.08

4 Analysis of the P-bound

The complexity of the proposed technique is pseudo-polynomial in nature. For each
task τi, there could be (pi/p1) operations involved and there are n number of tasks
in total in the system. Thus, the time complexity of P-bound is O(npn/p1), which is
in agreement with necessary and sufficient condition [21].

We now compare our work with existing bounds in terms of system utiliza-
tion and acceptance ratio. Results are obtained by evaluating bounds over syn-
thetic task sets. Specifically, task periods pi are randomly extracted from [10,106]
with uniform distribution. Simulations runs are made for task sets with tasks n =
{3,5,10,20,30,40,50} in increasing order. For each task set of size n, 1,000 simu-
lation runs are performed with different random task sets. The optimization problem
is solved by the sequential quadratic programming algorithm [7]. Tasks execution
times ci are randomly extracted from [0,pi] with uniform distribution. In Table 1,
we generated the task set with utilization less than or equal to n(21/n − 1). The col-
umn heading U-LL means the system utilization achievable with LL-bound, while
U-PB represents the utilization achievable through P-bound. It can be seen in Table 1
that the U-LL column lists descending values. This is due to the implicit behavior of
the LL-bound, i.e., Ulub � ln(2) for larger n. In comparison, the decrease in U-PB
column is quite descent.

In Table 2, we generated a task set having a higher utilization Ulub � 1. With such
higher utilization, there is a high probability that the task set is RM-infeasible. In
this case, either the computation time of tasks should be reduced or the system speed
should be increased to make the set RM-feasible. We study the effect of speed in
Table 2, by keeping the utilization intact, while the speed is increased so that the task
set becomes RM-feasible. Let αi be the associated speed for executing task τi . τi

misses its deadline di running at αi . As cα,i = ci/αi , increasing αi makes τi feasible.
Table 2 indicates the appropriate speed for Γ in column αr that produces RM-feasible
set when executed with αr , where αr ≥ αi .

5 Comparison by acceptance ratio

The stage is now ready for evaluating our proposed technique. We judge the P-bound
from the perspective of (i) the time it takes to produces the results and (ii) the accu-



Optimal task execution times for periodic tasks using nonlinear

Table 2 Improvement over
LL-bound for Ulub ≤ 1 Number

of tasks
Average processor utilization αr

U-LL (%) U-PB (%) Improvement (%)

3 77.98 88.04 10.06 1.135

5 74.35 83.35 9.00 1.199

10 71.77 80.47 8.70 1.242

20 70.53 77.76 7.23 1.286

30 70.12 76.89 6.77 1.300

40 69.92 76.56 6.64 1.306

50 69.80 76.57 6.77 1.306

racy of the results produced. It can be easily concluded that both LL-bound and H-
bound have polynomial complexity while the P-bound exhibits pseudo-polynomial
complexity, as discussed earlier. Though the complexity of P-bound is higher, its
practicability compensates the higher complexity very decently as the test is run at
design time where accuracy is of higher importance than the complexity associated.
The criteria we adapted here for determining the accuracy of generalized bound is
the acceptance ratio; the number of tasks set with respect to those accepted by EDF
test. Let X denotes a set of randomly generated tasks under the condition Ulub ≤ 1,
using the same criteria as discussed earlier in Sect. 4. Naturally, with this restraint on
system utilization, the task set X is EDF-feasible. The RM-feasibility of the task set
X is subject to the condition Ulub ≤ n(21/n − 1) or

∏n
i=1(Ui + 1) ≤ 2, however, for

higher utilization, there exist a subset of X, which in RM-infeasible. We represent
this set by Xf such that Xf ⊆ X. Let X

f
LL, X

f
HB, X

f
PB represent the task set which

is RM-feasible by LL-bound, H-bound, and P-bound, respectively. For a particular
utilization, the acceptance ratio is defined by

Acceptance(B) = X

XB
(30)

where B represent a bound. The experimental results are drawn in Fig. 6, where
RM-feasibility is influenced by the number of tasks, the decrease in acceptance ratio
of a bound with increasing n is understandable. Both LL bound and H-bound are
declining rapidly with n, as these are only sufficient conditions, however, generalized
bound shows better results because it is both necessary and sufficient condition. It can
be seen that X

f
LL ⊆ X

f
HB ⊆ X

f
PB, which is the intended purpose of this analysis; if any

other test can determine the RM-feasibility of X, so will the generalized bound.

6 Conclusions

Considering the specific characteristics of the RM necessary and sufficient schedu-
lability condition for a periodic task, which consists of a set of inequalities linked
through logical or relationships. We have shown how to use one inequality to express
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Fig. 6 Acceptance ratios of all
bounds with respect to
EDF-bound

the task schedulability constraint. The problem of determining the optimal tasks ex-
ecution times in the space of RM schedulability is solved using optimization tech-
niques. It is shown that the C-AP is a natural extension of the RM schedulability
test which typically assumes that the timing parameters are fixed. Computational re-
sults confirm that this new method is quite competitive. Our formulation improves
the results obtained by any other bound such as the LL-bound. By applying the opti-
mization technique, the P-bound founds the best design solution, even for large scale
problems. Furthermore, one advantage of our work is that any system performance
index can be designed as the objective functions of the nonlinear programming for-
mulation.
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