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1 Introduction

All the internet services available these days are dependant and running in data
centers. Companies like Google, Facebook, and Microsoft hosts millions of servers
in their data centers to provide services to their users [19]. The enormous size of data
centers leads to huge energy consumption. According to a news article, Google drew
260 MW of power in 2011 [6] that cost millions of dollars.

Recently, the researchers have focused on reducing the data center energy cost.
The researchers have focused on migration of the workload from one geographical
location to another to use the time and location dependent electricity prices [2] [21].
Similarly, researchers have also focused on the use of Uninterrupted Power Supply
(UPS) in data centers to shave off the peak power demands [24]. UPS has also been
used to safe the data center from the unexpected power outages. The power outages
also cost millions of dollars to data centers. Amazon was hit a severe power outage
in 2012 that cost Amazon millions of dollars [17].

The modern smart grid provides the needed electricity to the data centers. Smart
grids provide different pricing schemes for electricity based on different time scales
[10, 18]. Due to huge electricity demands, the data centers acquires electricity from
grids using long term contracts in day ahead market. The long term contracts cost
lower than the real time market price of electricity [18]. In this paper, we propose
the idea to buy electricity from more than one smart grid. The local power grid will
act as the main power source for the data center. However, data center will also be
powered by the remote grid with the surplus power. The data center can purchase the
available surplus power from remote grids at lower prices than local grid long term
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market and real time market prices. The sale of surplus energy is advantageous to the
remote grids as the surplus energy is mostly wasted [14]. The amount of available
surplus power could vary over time. UPS available in the data center for backup can
be used to store surplus power from the remote grid or when price from the local
grid is low. When the surplus power from the remote grid is insufficient or the price
of electricity at local grid is high, the stored power in the UPS batteries can be used.

In this work, we have targeted the key problem in the data center that how to
minimize the long term running cost of the data center? Several sub problems are
investigated to answer the key problem. How much power should be purchased from
the local grid in long term and real time price rates? How to efficiently use the
available surplus power from the remote grid? How to best use the UPS for power
saving and for backup while saving the life of battery for longer time? To optimally
utilize the data center with multiple sources while minimizing the operational cost
is really challenging task. There are numerous uncertainties both in power demand
and supply side. The power demands of the data center are time varying and job
dependent. Each job can consume different amounts of power as they may utilize
different number of machines. Similarly on the supply side, availability of surplus
energy is an uncertain and long term and real time prices from local grids can change
with time.

Previous works on reducing the power consumption and cost of electricity for
data center, assume the prior knowledge of the power demand to predict the future
power demands [25]. The previous works do not consider the scenario of providing
the power to the data center from multiple power grids. In contrast to the previous
works, we aim to design efficient strategy to reduce the long term operational cost
of the data center while having the constraints of dynamic power demand with no
previous knowledge and uncertain availability of surplus power from remote grid.

We develop an algorithm titled “Smart Data center” to make a data center smarter
using two stage Lyapunov optimization techniques. Smart Data center computes the
amount of power to be purchased from the local grid in a long term contract. The
amount of electricity to be purchased from the local grid on real time market rate and
amount of the electricity to be stored and retrieved from the UPS are also computed
by the Smart Data center algorithm. We analyze the performance of the Smart Data
center algorithm through rigorous theoretical analysis in this work.

2 System Model

We assume a discrete time model for the working of a data center. The notations
and their meanings in the model are presented in the Table 1. Time for the model is
divided into k slots each of length T. The length T depends on the intervals provided
by the grids in long term contracts. Each time slot is further divided into fine grained
slots of length L. We also assumed that power demand of the data center d(t) and
available surplus power of remote grid r(t) are random variables. The operations of
the data center in a system model include following key decisions.
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Table 1 Notations and their
meanings Notation Meaning

t Coarse grain time slot

τ Fine grain time slot

d(t) Power demand

r(t) Surplus power at remote grid

Pmax Maximum purchasing power capacity

Ef ull(t) Electric power units purchased in long term
for time t

Elt (t) Electric power units purchased in long term
for time τ

r(t) Units of surplus power purchased from remote
grid

plt (t) Unit price of electricity in long term market

prt (t) Unit price of electricity in real time market

ps (t) Unit price of surplus power from remote grid

Pgrid Maximum capacity of local grid

Eu(τ) Level of power in the UPS

Eu max, Maximum and minimum capacity of UPS

Eu min

D(τ) Amount of power discharge from battery at
time τ

R(τ) Amount of power (Re)charged in battery at
time τ

η Efficiency of the UPS

2.1 Long Term Power Purchase

The data center takes notes of the power demand d(t) and available surplus power at
the remote grid r(t) at the start of each coarse grained time slot t. The data center is
provided with a maximum threshold limit Pmax as a maximum purchasing power
capacity. Based on the observations, the data center takes the decision that how
much electric power units Efull (t) should be purchased from the local grid at price
plt(t) within the purchasing capacity at the start of coarse grain time slot. After the
purchase, the data center divides the electric power units equally to be used in all the
fine grain time slots.

Elt (t) = Efull(t)

L
. (1)

For example, suppose the data center decides to purchase 720 KW when the length of
the coarse grained time slot is one day and fine grained time slot is 1 h. In the above
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mentioned case, the data center will distribute the 500 KW equally, i.e., 500/24=
30 KW for each fine grained time slot.

2.2 Real Time Power Purchase

We have assumed that the cost of the surplus power at the remote grid is lower than
the local grid long term and real time power purchase. Whenever there is a surplus
power available on the remote grid in time slot t, the data center tries to use it as
much as possible. In case when surplus power is more than the power demand, the
excess power is used to charge the UPS. At each fine grained time slot τ, the UPS
will not be needed to charge or discharge if the sum of long term power purchase
from local grid and surplus power from the remote grid is less than the total power
demand from the data center.

Elt (t) + r(τ ) ≥ d(τ ). (2)

Otherwise, if the power demand is more than the sum (left hand side of the Equation)
than the data center has to make the decision to discharge the power from the batteries
D(τ ) of the UPS. If the UPS power is not enough for the remaining power demand,
more electric power units Ert(τ ) are purchased from the local grid at real time price
rateprt(τ ) To balance out the equation, any surplus purchased power is used to charge
the batteries of the UPS C(τ ). We have an overall equation of the data center as

Elt (t) + Ert (τ ) +D(τ ) + r(τ ) − C(τ ) = d(τ ),

0 ≤ Elt (t) + Ert (τ ) ≤ Pgrid. (3)

3 Constraints

There are a number of constraints that must be satisfied by the data center.

3.1 Purchasing Accuracy and Cost

The price of surplus electricity from the remote grid is lower than the electricity
prices in the long term contract and real time market price rates from local grids.

prt (τ ) > plt (t) > ps(τ ). (4)

However, availability of surplus electricity from the remote grid is dynamic in nature.
Similarly, the data center can purchase electricity from real time market but that is
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the most expensive. Therefore, the data center has to make a decision of purchase of
electricity with accuracy to keep the overall cost of the electricity purchased to be
minimized.

3.2 Data Center Availability

Let Eu(τ ) be the level of the power in the UPS batteries at time τ. Power in the
batteries of the UPS is affected by the efficiency of USP (dis)charging. We assumed
that efficiency for discharging and charging η ∈ [0,1] is same. The dynamics of the
UPS power level can be expressed by the following equation

Eu(τ + 1) = Eu(τ ) + ηR(τ ) − D(τ )

η
. (5)

To guarantee the availability of the data center in case of power outages, minimum
level of power must be maintained in the batteries of the UPS. If the maximum power
storage capacity of the UPS is Eu max than we have

Eu min < Eu(τ ) < Eu max. (6)

3.3 UPS Lifetime

At given time t, the amount of power that can be stored or retrieved from the batteries
of the UPS is limited by their maximum amounts

0 ≤ D(t) ≤ D max, 0 ≤ R(t) ≤ R max. (7)

The lifetime of the UPS is constrained within the number of cycles of UPS charging
and discharging [24]. The operating cost of the UPS also depends upon UPS charging
and discharging cycles. We assume that cost of UPS Cr is same in both cases of
charging and discharging. If the purchase cost of a new UPS is Cpurchase that can
sustainMcycles than we have

Cr = Cpurchase

Mcycles

. (8)

If the life of UPS is defined as Life, than the maximum number of times the batteries
of the UPS are allowed to charge and discharge over a longer period of time [0, t− 1]
and t ∈ kT, will be

Nmax = Mcycles ∗ kT
Life

. (9)
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The variable kT is the total time for modeling, i.e., k coarse grain slots of length T.
Therefore, Nmax satisfies the following equation

0 ≤
t−1∑
τ=0

∂(τ ) ≤ Nmax. (10)

In the above equation, ∂(τ ) denotes the usability of the batteries of UPS in time τ.
The variable ∂(τ ) will be 1 if the discharge or recharge occurs otherwise the variable
takes the zero value. The operational cost of the UPS can now be calculated as the
product of usability of the batteries of UPS and cost of UPS in time slot t.

Cost of UPSopertional = ∂(t) ∗ Cr. (11)

4 Cost Minimization

The operational cost of the data center at a fine grained time slot τ is the sum of the
costs for purchasing electricity from the local grid, remote grid, and the operational
cost of the UPS.

Cost of data centeropertiaonal(τ ) (12)

= Elt (t)plt (t) + Ert (τ )prt (τ ) + r(t)ps(t) + ∂(t)Cr.

In this work, we aimed at designing the algorithm that can make decisions by solving
the following minimization problem

min Cost of data centeravg
∼= lim

t→∞

1

t

t−1∑
τ=0

Cost of data centeropertiaonal (τ ),

∀t: Constraints (3) (6) (7) (8)

(13)

5 Algorithm Design

We design our algorithm using the Lyapunov optimization technique to achieve the
near optimal solution. The algorithm does not use the prior knowledge of power
demand. To guarantee the availability of data center, the algorithm has to track the
status of power level in the batteries of the UPS. Tracking the status of power level in
the batteries is necessary as we want to ensure that each time the power is discharged
or charged from the batteries of the UPS, there should be enough power remain in
the battery that can be used during blackouts as backup. To track the battery power
of the UPS, we use the supporting variable X(t) defined as follows:

X(t) = Eu(t) − VPmax

T
− Eu min − D max

η
. (14)
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In the above equation, V is a control variable that ensures that whenever batteries of
UPS is charged or discharged, the power in the batteries should lie in the minimum
and maximum level. With increment in the time slot t, the variable X(t) changes as

X(t + 1) = X(t) + ηR(t) − D(τ )

η
. (15)

We consider the constraint of availability of power level in the batteries of the UPS as
a queue problem and transform the constraint into queue stability problem, similar to
the work presented in [23]. We define the Lyapunov function to represent the scalar
metric of queue congestion as

L(t) ∼= 1

2
X2(t). (16)

We use the Lyapunov drift to stabilize the system that pushes the Lyapunov function
towards lower congestion state. The Lyapunov drift over time period T is defined as

�LDT ∼= L(t + T ) − L(t)|X(t). (17)

We obtained the drift penalty term by following the Lyapunov drift penalty framework
[5]. In every time frame of length T, the Smart Data center algorithm makes a decision
to minimize the upper bound on the drift plus penalty. The upper bound can be
obtained by adding the operational cost to the drift plus penalty as:

�LDT (t) + V ∗
t+T−1∑
τ=0

Cost of data centeropertiaonal (τ ) | X(t). (18)

The data center chooses the control parameter V to adjust the tradeoff between the
level of power in the UPS for backup and minimizing the operational cost of the data
center. For optimal cost minimization, V has to be set high and for more power back
up, the value of V needs to be small.

5.1 Drift Plus Penalty Upper Bound

A key question is to find out the upper bound for the value of V. The upper bound of
drift plus penalty helps in finding the maximum operational cost of the data center
that can be saved under the constraint of keeping the power in the batteries of the
UPS for backup. To find out the upper bound we assume that Lyapunov function
L(0)> ∞, t =KT, τ ∈ [t, t +T−1], and V > 0. We take the squares of the Eq. (15)
on both sides.
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X (τ + 1) = X (τ)+ ηR (t)− D (τ)

η
,

X2 (τ + 1) = X2 (τ )+ 2 ∗X (τ) ∗
[
ηR (t)− D (τ)

η

]
+
[
ηR (t)− D (τ)

η

]2

,

[
X2 (τ + 1)−X2 (τ )

]
2

= X (τ) ∗
[
ηR (t)− D (τ)

η

]
+
[
ηR (t)− D(τ)

η

]2

2
.

As R(t) ∈ [0, Rmax] and D(t) ∈ [0, Dmax], the above equation is transformed into the
following equation[

X2 (τ + 1)−X2 (τ )
]

2
≤ X (τ) ∗

[
ηR (t)− D (τ)

η

]

+1

2
max

[
η2R2 (t),

D2 (τ )

η2

]
. (19)

We get the 1-time slot conditional Laypunov drift by taking the expectation over
power demand, available surplus power and its price in the remote grid, and the price
of the electricity in long term contract and real time market in the local grid on the
auxiliary variable X(t) as

�LD1 (t) ≤ X (τ) ∗
[
ηR (t)− D (τ)

η

]
+ 1

2
max

[
η2R2 (t),

D2 (τ )

η2

]
. (20)

By taking the sum of all inequalities over τ ∈ [t, t + 1, . . . . . . t +T− 1], we obtain
the T -time slot Laypunov drift

�LDT (t) ≤ X (τ) ∗
[
ηR (t)− D (τ)

η

]
+ T ∗

{
1

2
max

[
η2R2 (t),

D2 (τ )
η2

]}
.

(21)

Finally we add the operational cost on both sides of the equation and get the upper
bound on the T -time slot Lypunov drift plus penalty.

�LDT (t)+ V ∗
t+T−1∑
τ=0

Cost of data centeropertiaonal (τ ) | X (t)

≤ X (τ) ∗
[
ηR (t)− D (τ)

η

]
+ T

∗
{

1

2
max

[
η2R2 (t),

D2 (τ )

η2

]}
+ V

∗
t+T−1∑
τ=0

Cost of data centeropertiaonal (τ ) | X (t). (22)

The Smart data center algorithm follows the drift plus penalty principle and tries to
minimize the right hand side of the Equation.
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5.2 Relaxed Optimization

In order to minimize the right hand side of the Eq. (22), the data center needs to
know the queue backlog X(t) over time τ ∈ [t, t +T− 1]. The amount of available
surplus power in the remote grid, the power level in the batteries of the UPS, and the
power demand affects the queue X(t). Moreover, the dynamic nature of electricity
prices, available surplus power, and power demand are major constraints for taking
the decision. The researchers have used forecasting techniques to predict the variable
nature of the parameters. However, one day head forecasting techniques causes daily
mean errors of approximately 8.7 % [16]. Therefore, in order to remove the need
of forecasting techniques we used the near-future queue blog statistics. We used the
current values of the queue, i.e., X(τ )=X(t) for the time period t<τ ≤ t +T− 1 for
the backlog statistics. However, the use of near future queue backlog result in slightly
“loosening” of the upper bound on the drift plus penalty term. We have proved this
loosening of the upper bound in Corollary 1.

Corollary 1 (Loosening Drift plus penalty bound) Suppose the control parameter
V is positive and for some nonnegative integer K, the time slot t is equal to KT. By
changing the time period from τ to t in the queue X, the drift plus penalty satisfies:

�LDT (t)+ VE{
t+T−1∑
τ=t

Cost of data centeropertiaonal (τ ) |X (t)}

≤
{

1

2
max

[
η2R2 (t),

D2 (τ )

η2

]}

+
T (T − 1)

[
η2R2 (t), D2(τ )

η2

]
2

+ E

{
t+T−1∑
τ=t

X (t) ∗
[
ηR(τ)− D (τ)

η

]
|X(t)

}
(23)

Proof According to the Eq. (15), for any τ ∈ [t, t+T− 1], we get

X(t) − (τ − t)Dmax
η

≤ X(τ ),

and X(τ ) ≤ (τ − t)ηRmax.
Therefore, recalling each term in Eq. (22), we have

t+T−1∑
τ=t

X(τ) [R (τ) η − D (τ )/η]

≤
t+T−1∑
τ=t

[X(t)+ (τ − t) ηRmax]R(τ)η
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−
t+T−1∑
τ=t

[X(t)− (τ − t)Dmax/η]D(τ)/η

=>
t+T−1∑
τ=t

X(τ) [R(τ) η −D(τ) /η]

+
t+T−1∑
τ=t

[
(τ − t)η2RmaxR(τ)−DmaxD(τ)/η2

]

≤
t+T−1∑
τ=t

X(τ)[R(τ) η −D(τ)/η]

+
T (T − 1)

[
η2R2 (t), D2(τ )

η2

]
2

By substituting the above inequalities into Eq. (22), the corollary is proved.

5.3 Two Timescale Smart Data Center Algorithm

We see that the upper bound that can be achieved using Eq. (23) is larger than the one
in Eq. (22). The Smart Data center algorithm aims to make the decision to minimize
the right hand side of the Eq. (23). Depending on the available surplus power at
the remote grid r(t), the algorithm has to make the decision to purchase Efull(t) at
the start of the each coarse grained timeslot t. Moreover, at the beginning of each
fine grain time slot τ, the Smart Data center algorithm has to make the decision
for Ert (τ ),D(τ ), andR(τ ). Consequently, the problem can be separated into two
timescales as two subproblems. In the coarse grain time slot, the algorithm has to
make the decision to ensure that current energy demand is fullfiled and batteries of
the UPS should be charged with enough power for the future use. The decisions for
UPS charging and discharging along with purchase of electricity on real time rate
from the local grid are made by algorithm at the start of each fine grain timeslot. The
queue statistics are updated at the end of each time slot.

Algorithm 1 The Smart Data center Algorithm

1. Long term planning: The data center decides the optimal power purchaseEf ull(t)
at the start of each coarse-grained time slot t = kT where k is nonnegative integer.
The long term ahead power purchase is to minimize the following problem

min E

{
t+T−1∑
τ=t

V [Elt (t)plt (t)+ Ert (τ )prt (τ )+ r(τ )ps (τ )] |X(t)
}

+ E

{
t+T−1∑
τ=t

X(τ)[R(τ)η −D(τ)/η]|X (t)
}

s.t. (3)
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2. Real time power balancing: The data center divides the power purchased in long
term equallyElt (t) = Efull(t)

L
among all the fine grained time slots τ ε [t, t+T− 1].

The data center decides real time purchase of power Ert (τ ) from the local grid,
charging R(τ ) and discharging D(τ ) of batteries of the UPS to minimize the
following problem

minVErt (τ )prt (τ ) + r(τ )ps(τ ) +X(t) [R(τ )η − D(τ )/η]

s.t. (3)(6)(7)(8)

3. Queue update: Update the queues using Eqs. (5) and (15).

6 Performance Analysis

In this section, we analyze the performance bound of the Smart Data center algorithm.

Theorem (Performance Bound) The time-averaged cost ηRmax achieved by the
Smart Data center algorithm based on accurate knowledge of X(τ ) in the future
coarse-grained interval satisfies the following bound with any nonnegative value of
decision parameter V :

1. The time-average cost Cost of data centeravg achieved by the algorithm satisfies
the following bound:

Cost of data centeravg
∼= lim
t→∞1/t

t+T−1∑
τ=0

E
[
Cost of data centeropertiaonal (τ )

]

≤ Øopt +
[{

1

2
max

[
η2R2 (t),

D2 (τ )

η2

]}

+
T (T − 1)

[
η2R2 (t), D2(τ )

η2

]
2

⎤
⎦ /V

Where, Øopt is an optimal solution
Proof: Let t= kT for nonnegative k and τ ∈ [t , t + T − 1]. We first look at

the optimal solution. In optimal solution, all the future statistics including power
demand, surplus energy from the grid and energy prices are kown to the data center
in advance. Due to knowledge of future, the data center can manage to reduce the
real time purchase to zero. We can say the optimal solution is

Øopt ∼= min {Elt (t) plt (t)+ r(τ )ps (τ )+ ∂ (t) ∗ Cr}
s.t. Elt (t)+ D(τ)+ r(τ )− C(τ) = d(τ),
0 ≤ Elt (t) ≤ Pgrid,

∀t: constraints (6) (7) (10).
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By using the optimal solution in right hand side of the Eq. (23), we get

�LDT (t)+ VE

{
t+T−1∑
τ=t

Cost of data centeropertiaonal (τ )|X (t)
}

≤
{

1

2
max

[
η2R2 (t),

D2 (τ )

η2

]}

+
T (T − 1)

[
η2R2 (t), D2(τ )

η2

]
2

+ VØopt

Taking the expectation of the both sides and rearranging terms we get

E {L (t + T )− L (t)} + V TE

{
t+T−1∑
τ=t

Cost of data centeropertiaonal (τ )|X(t)
}

≤
{{

1

2
max

[
η2R2(t),

D2(τ )

η2

]}

+
T (T − 1)

[
η2R2 (t), D2(τ )

η2

]
2

+
⎫⎬
⎭ T + V TØopt .

By taking the sum over t = kT, k = 0,1,2,. . . , k − 1 and dividing both sides by VKT,
we get

1

kT
E

{
kT−1∑
τ=0

Cost of data centeropertiaonal (τ )

}

≤

⎧⎨
⎩
{

1
2max

[
η2R2 (t), D2(τ )

η2

]}
+

T (T−1)

[
η2R2(t), D

2(τ )
η2

]

2 +
⎫⎬
⎭

V
+ Øopt .

As the variable k approaches to infinity, k → ∞, the theorem is proved.

2. The UPS battery level Eu(t) is bounded in the range [Eumin, Eumax]. There is
always power remained in the batteries for backup in case of black out.

Proof: We first prove that

−VPmax

T
− Dmax

η
≤ X(t) ≤ Eumax − VPmax

T
− Eumin − Dmax

η

We prove this by induction. For t= 0 we have

X(0) = Eu(0) − VPmax

T
− Eumin − Dmax

η
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and Eumin ≤ Eu(0) ≤ Eumax. So we get

−VPmax

T
− Dmax

η
≤ X(0) ≤ Eumax − VPmax

T
− Eumin − Dmax

η

Now we consider 0 ≤ X(t) ≤ Eumax − VPmax
T

− Eumin − Dmax
η

, therefore, there
is no battery recharging, i.e., R(t)= 0. The maximum amount of power that can be
discharged each time is Dmax

η
.

Now we have

−VPmax

T
− Dmax

η
< −Dmax

η
< X(t + 1) ≤ X(t)

≤ Eumax − VPmax

T
− Eumin − Dmax

η
.

For the case when −VPmax
T

< X(t) ≤ 0,D(t) = 0. The amount of power that can be
charged and discharged at maximum each time are ηRmax and Dmax

η
, respectively.

We get

−VPmax

T
− Dmax

η
< X(t + 1) ≤ X(t) + ηRmax

≤ Eumax − VPmax

T
− Eumin − Dmax

η
.

Finally consider the case, when −VPmax
T

− Dmax
η

≤ X(t) ≤ −VPmax
T

again D(t)= 0 as

X(t) ≤ −VPmax
T
. We get

−VPmax

T
− Dmax

η
< X(t)≤X(t + 1) ≤Eumax − VPmax

T
− Eumin − Dmax

η
.

Using Equ. 14, we have

−VPmax

T
− Dmax

η
≤ X(t) = Eu(t) − VPmax

T

−Eumin − Dmax

η
≤ Eumax − VPmax

T
− Eumin − Dmax

η
.

From all the cases, we can conclude that

Eu min < Eu(τ ) < Eu max.

3. All decisions are feasible.

The smart data center algorithm makes decision to satisfy all the constraints.
Therefore, the Smart Data center algorithm is feasible.
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7 Related Work

The past decade has witnessed the enormous growth in the online applications and
services. The online applications and services are hosted in data centers. With the
increase demand of online services, the cost of power consumption in the data cen-
ters is increasing significantly. There is extensive existing research on the power
management of data centers [1, 13, 22]. Most of the works focus on the reducing
the power consumption in the data center using different schemes like voltage scal-
ing, frequency scaling, and dynamic shutdown. However, the earlier works have not
focused on reducing the overall cost of the power used in the data center.

Recently, the researchers have started to focus on reducing the cost of power
utilized in the data center. Ref. [2, 20, 21], focused on migration of workload between
different data centers to utilize the low electricity prices in different geographical
locations. However, the emphasis is not on reducing the cost of a single data center.

For reducing the cost of a single data center, the researchers have emphasis on
the power storage in the data centers. In [7–9, 23] and [24], the researchers have
shown the importance of using UPS in the data center for reducing the overall cost
of electricity in a single data center. However, the aforementioned works have not
considered the multiple price markets to power up the data center.

In [10–12, 15] the authors have worked on energy procurement from long term,
intermediate, real time markets. However, the approaches in the aforementioned
schemes depends upon the forecasting techniques, such as dynamic programming
and Markov decisions to know the power demand in advance. Similar to our work,
Deng et al. [3, 4] have used two timescale Lyapunov optimization technique to reduce
the cost of a single data center. They have utilized the long term and real time price
market of a smart grid along with the On-Site wind or solar green energy. However,
they have ignored the cost of On-Site wind or solar energy. We have considered the
scenario of providing the power to the data center from multiple power grids, local
grid for long term and real time market, whereas remote grid for low cost surplus
energy.

8 Conclusions

In this work, we have targeted the key problem that how to minimize the cost of
power consumption in the data center? We proposed the new idea to power up the
data center from more than one Smart grid. We exploited the long term and real
time price market from the local grid and low cost surplus power from the remote
grid. We developed the algorithm titled “Smart Data center” that decide how much
power to be purchased from the long term and real time market. We also utilized the
Uninterrupted Power Supply (UPS) as back up in the data center. The performance
of the “Smart Data center” algorithm is analyzed using theoretical analysis. The
performance analysis of the algorithm using real world traces are left for future
work.



Smart Data Center 261

References

1. K. Bilal, S. U. R. Malik, O. Khalid, A. Hameed, E. Alvarez, V. Wijaysekara, R. Irfan, S.
Shrestha, D. Dwivedy, M. Ali, U. S. Khan, A. Abbas, N. Jalil, and S. U. Khan, “A Taxonomy
and Survey on Green Data Center Networks,” Future Generation Computer Systems, 2013.

2. N. Buchbinder, N. Jain, and I. Menache. “Online job-migration for reducing the electricity bill
in the cloud.” In NETWORKING, Springer, 2011, pp. 172–185.

3. W. Deng, F. Liu, H. Jin, and C. Wu. “SmartDPSS: Cost-Minimizing Multi-source Power Supply
for Datacenters with Arbitrary Demand.” In Proceedings of the 13th International Conference
on Distributed Computing Systems (ICDCS-13). 2013.

4. W. Deng, F. Liu, H. Jin, C. Wu, and X. Liu, “MultiGreen: cost-minimizing multi-source data-
center power supply with online control,” In Proceedings of the fourth international conference
on Future energy systems, pp. 149–160. ACM, 2013.

5. L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource allocation and cross-layer control in
wireless networks. Now Publishers Inc, 2006.

6. J.Glanz, “Google details, and defends, its use of electricity,” The New York
Times, 2011, http://www.nytimes.com/2011/09/09/technology/google-details-and-defends-
its-use-of-electricity.html, accessed August 2013.

7. S. Govindan, A. Sivasubramaniam, and B. Urgaonkar, “Benefits and limitations of tapping
into stored energy for datacenters,” In 38th Annual International Symposium on Computer
Architecture (ISCA), 2011, pp. 341–351. IEEE, 2011.

8. S. Govindan, D. Wang, A. Sivasubramaniam, and B. Urgaonkar, “Leveraging stored energy
for handling power emergencies in aggressively provisioned datacenters,” In ACM SIGARCH
Computer Architecture News, ACM, Vol. 40, No. 1, 2012, pp. 75–86.

9. Y. Guo, Z. Ding, Y. Fang, and D. Wu, “Cutting down electricity cost in internet data centers by
using energy storage,” In Global Telecommunications Conference (GLOBECOM 2011), 2011
IEEE, pp. 1–5. IEEE, 2011.

10. M. He, S. Murugesan, and J. Zhang, “Multiple timescale dispatch and scheduling for stochastic
reliability in smart grids with wind generation integration,” In INFOCOM, 2011 Proceedings
IEEE, 2011, pp. 461–465.

11. L. Huang, J. Walrand, and K. Ramchandran, “Optimal power procurement and demand re-
sponse with quality-of-usage guarantees,” In Power and Energy Society General Meeting,
IEEE, 2012, pp. 1–8.

12. L. Jiang and S. Low, “Multi-period optimal procurement and demand responses in the presence
of uncrtain supply,” In Proceedings of IEEE Conference on Decision and Control (CDC). 2011.

13. D. Kliazovich, P. Bouvry, and S. U. Khan, “GreenCloud: A Packet-level Simulator of Energy-
aware Cloud Computing Data Centers,” Journal of Supercomputing, Vol. 62, No. 3, pp. 1263–
1283, 2012.

14. J. A. P. Lopes, F. J. Soares, P. M. Almeida, and M. Moreira da Silva, “Smart charging strategies
for electric vehicles: Enhancing grid performance and maximizing the use of variable renewable
energy resources,” In EVS24 Intenational Battery, Hybrid and Fuell Cell Electric Vehicle
Symposium, Stavanger, Norveška. 2009.

15. J. Nair, S. Adlakha, and A. Wierman, Energy procurement strategies in the presence of
intermittent sources. Caltech Technical Report, 2012.

16. F. Nogales and J. Conttreas, “Forecasting Next Day Electricity Prices by Time series Models”,
IEEE Transaction on power systems, Vol. 17, No, 2, May 2002.

17. F. Paraiso, P. Merle, and L. Seinturier, “Managing elasticity across multiple cloud providers,”
In Proceedings of the 2013 international workshop on Multi-cloud applications and federated
clouds, pp. 53–60. ACM, 2013.

18. A. Qureshi, “Power-demand routing in massive geo-distributed systems,” PhD diss., Mas-
sachusetts Institute of Technology, 2010.



262 M. U. S. Khan and S. U. Khan

19. A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs. “Cutting the electricity bill
for Internet-scale systems.” ACM SIGCOMM Computer Communication Review, Vol. 39, No.
4, 2009, pp. 123–134.

20. L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost: optimization of distributed in-
ternet data centers in a multi-electricity-market environment,” In INFOCOM, 2010 Proceedings
IEEE, pp. 1–9. IEEE, 2010.

21. L. Rao, Lei, X. Liu, M. D. Ilic, and Jie Liu, “Distributed coordination of internet data centers
under multiregional electricity markets.” Proceedings of the IEEE, Vol. 100, No. 1,2012 pp.
269–282.

22. R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No ‘power’ struggles:
Coordinated multi-level power management for the data center,” ACM SIGARCH Computer
Architecture News, Vol. 36, Mar. 2008, pp. 48–59.

23. R. Urgaonkar, B. Urgaonkar, M. l. J. Neely, and A. Sivasubramaniam, “Optimal power cost
management using stored energy in data centers,” In Proceedings of the ACM SIGMETRICS
joint international conference on Measurement and modeling of computer systems, pp. 221–
232. ACM, 2011.

24. D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and H. Fathy, “Energy storage in
datacenters: what, where, and how much?,” In ACM SIGMETRICS Performance Evaluation
Review, Vol. 40, No. 1, ACM, 2012, pp. 187–198.

25. X. Lu, Xin, Z. Y. Dong, and X. Li. “Electricity market price spike forecast with data mining
techniques.” Electric power systems research, Vol. 73, No. 1, 2005, pp. 19–29.


	Part I Energy Efficiency
	Smart Data Center
	1 Introduction
	2 System Model
	2.1 Long Term Power Purchase
	2.2 Real Time Power Purchase

	3 Constraints
	3.1 Purchasing Accuracy and Cost
	3.2 Data Center Availability
	3.3 UPS Lifetime

	4 Cost Minimization
	5 Algorithm Design
	5.1 Drift Plus Penalty Upper Bound
	5.2 Relaxed Optimization
	5.3 Two Timescale Smart Data Center Algorithm

	6 Performance Analysis
	7 Related Work
	8 Conclusions
	References





