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Abstract—With the increase in cloud service providers, and the increasing number of compute services offered, a migration of
information systems to the cloud demands selecting the best mix of compute services and VM (Virtual Machine) images from
an abundance of possibilities. Therefore, a migration process for web applications has to automate evaluation and, in doing
so, ensure that Quality of Service (QoS) requirements are met, while satisfying conflicting selection criteria like throughput and
cost. When selecting compute services for multiple connected software components, web application engineers must consider
heterogeneous sets of criteria and complex dependencies across multiple layers, which is impossible to resolve manually.
The previously proposed CloudGenius framework has proven its capability to support migrations of single-component web
applications. In this paper, we expand on the additional complexity of facilitating migration support for multi-component web
applications. In particular, we present an evolutionary migration process for web application clusters distributed over multiple
locations, and clearly identify the most important criteria relevant to the selection problem. Moreover, we present a multi-
criteria-based selection algorithm based on Analytic Hierarchy Process (AHP). Because the solution space grows exponentially,
we developed a Genetic Algorithm (GA)-based approach to cope with computational complexities in a growing cloud market.
Furthermore, a use case example proofs CloudGenius’ applicability. To conduct experiments, we implemented CumulusGenius,
a prototype of the selection algorithm and the GA deployable on hadoop clusters. Experiments with CumulusGenius give insights
on time complexities and the quality of the GA.

Index Terms—cloud migration, migration process, selection problem, criteria set, decision-making, decision support.
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1 INTRODUCTION

AWeb application is a computer software appli-
cation, which interacts with users through a

frontend programmed using browser-based language
(such as JavaScript and HTML). Web applications are
typically accessed by million of users over the internet
via a common web browser software (e.g., Internet
explorer, Firefox, etc.). Common web applications in-
clude webmail, online retail sales, online auctions,
wikis and the like.

1.1 Motivation and The Research Problem

In the traditional web application hosting model [1],
hardware needs to be provisioned for handling peak
load. However, uncertain traffic periods and unex-
pected variations in workload patterns may result in
low utilization rates of expensive hardware. There-
fore, the traditional approach of provisioning for peak
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workloads leads to unused or wasted computing cy-
cles when traffic is low. With the advent of cloud
computing, it is expected that more and more web
applications will be hosted using cloud-based, vir-
tualized services. Cloud computing [2] provides an
elastic ICT (Information Communication Technology)
infrastructure for the most demanding and dynamic
web applications. Clouds provide an infrastructure (if
optimally selected and allocated) that can match ICT
cost with workload patterns in real-time. Cloud 1 ser-
vice types can be abstracted into three layers: Software
as a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS) [3].

Cloud computing is a disruptive technology and
an adoption brings along risks and obstacles. Risks
can turn into effective problems or disadvantages for
organizations that may decide to move web applica-
tions to the cloud. Such a decision depends on many
factors, from risks and costs to security issues, service
level and QoS expectations. A migration from an
organization-owned data center to a cloud infrastruc-
ture service implies more than few trivial steps. Steps
of a migration to PaaS offerings, such as Google App
Engine, would differ in several regards. The following

1. Background information on cloud computing, VM images,
and meta-data available for VM and compute services is given in
Supplemental Material
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Fig. 1. Example of a VM Image (PaaS) and Compute (IaaS) Service Selection

steps outline a migration of an organization’s web
application to an equivalent on a IaaS such as Amazon
Web Services (AWS) EC2, GoGrid, Rackspace, and the
like.

First, an appropriate cloud infrastructure service, or
IaaS offering, is selected. This demands a well-thought
decision to be made that considers all relevant factors,
such as price, Service Level Agreement (SLA) level,
network latency, data center location, availability, and
support quality. The basis of a selection are data and
QoS measurements regarding each factor that describe
the quality and make service options comparable.
For instance, a low-end Compute service of Microsoft
Azure is 30% more expensive than the comparable
AWS EC2 Compute service, but Azure can process
application workload twice as quickly.

Secondly, the existing web application and its exe-
cution platform, i.e., a web/application server, a load-
balancer, and a database, are transferred from the
local data center to the selected cloud infrastructure
service. Therefore, the web application and server
must be converted into a form expected by a cloud
infrastructure service. Typically, in this step, the whole
web application is bundled as a VM image that
consists of a software stack, from operating system
and software platforms to the software containing
the business logic. It is often unachievable to convert
an existing web application and its server directly
to a VM image format compatible with a certain
cloud infrastructure service. Therefore, an adequate
existing VM image offered by the cloud provider
can be chosen and customized. For example, one
can select existing VM images provided by bitnami
[4] or thecloudmarket.com [5] to cloudify an existing
web application system component (e.g., application

server or database). Additionally, markets for cloud
VM images exist, such as the AWS marketplace [6].

Existing images vary in many aspects, such as
underlying operating system, software inside the soft-
ware stack, or software versions. Therefore, selecting
a functionally correct VM image becomes a complex
task. Besides, choosing a comprehensive VM image
helps to minimize the effort of installing a software
stack on a basic image. The resulting VM image
should reflect the original application server and at
least replace it in a sufficing manner. Next, a migration
strategy needs to be defined and applied to make
the transition from the local data center to the cloud
infrastructure service. A migration strategy defines
procedures and the course of action to transition
a system and its data to the target state. In case
data must be incorporated in the web application
migration, all data on the original machine must be
transferred to the new system in the cloud. Moreover,
all configurations and settings must be applied on
the new web server in the cloud to finish creating
an appropriate equivalent.

Optimal web application server QoS in cloud en-
vironments demands appropriate configuration for
both VM images and cloud infrastructure services.
However, no detailed comprehensive cost, as well as
performance or feature comparison of cloud services
exists. The key problem in mapping web application
server components to cloud data centers, as depicted
in Figure 1, is selecting the best collection of VM
images and compute services to ensure that a system’s
QoS targets are met. Furthermore, another challenge
is to satisfy conflicting selection criteria related to soft-
ware (e.g., operating system and popularity) and com-
pute services (e.g., latency, cost, data center location,
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and so on). Additionally, components might be placed
at different locations or providers to prevent outages
and generate costs for the Internet connectivity.
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Fig. 2. Overview of Hybrid Multi-Goal Optimization
Heuristic Method (HMOHM) Approach

1.2 Overview of Methods and Contributions
To address the complexities when migrating multi-
component web application server clusters, we ex-
pand the migration framework CloudGenius. The
CloudGenius framework [7] translates cloud service
selection steps into multi-criteria decision-making
problems using (MC2)2 and the Analytic Hierar-
chy Process (AHP) [8]. The framework, furthermore,
determines the most viable VM images and com-
patible compute services at IaaS layer. CloudGenius
originally provides a framework that guides through
a cloud migration process and offers a model and
method to determine the best combined and com-
patible choice of VM images and compute services
for a single web server. With enhancements to the
framework, we provide comprehensive support for
migrations of distributed, multi-component (web/ap-
plication server, database, and load-balancer) web ap-
plication clusters while factoring in data flow depen-
dencies of components raising network traffic costs.

As the solution space for the problem grows ex-
ponentially, we developed a Hadoop and Genetic
Algorithm (GA)-based approach to cope with com-
putational complexities in a growing market of cloud
service offerings. By combining a GA with AHP, we
created a Hybrid Multi-Goal Optimization Heuristic
Method (HMOHM). Details on the HMOHM can be
found in Figure 2. A new challenge resulting from
the combination of GA and AHP is to transfer subjec-
tive opinions stated once into an AHP-based fitness
function. Therefore, we developed a novel approach
for AHP-based fitness functions in GAs. AHP requires
pair-wise comparisons among all alternatives to nor-
malize values for an absolute scale. This becomes
unsolvable with a potentially infinite number of alter-
natives considered in a GA. Therefore, we needed to
develop a novel way for speeding up the execution
time for HMOHM. To this end, we implemented a
parallel version of the HMOHM over hadoop clusters.
Specifically, the main contributions of this paper are:
• We clearly identify the most important selection

criteria, selection goals, and cloud service alter-
natives, considering the use case of migrating a
web application cluster to public cloud services
such as Amazon EC2 and GoGrid.

• We extend analytical formulations and models of
our previous work [7] for handling the migration

of web server cluster components across multiple
cloud data centers spanning over geographically
distributed network boundaries.

• A hybrid decision making technique is pro-
posed that combines multi-criteria decision mak-
ing (AHP) and evolutionary optimization tech-
niques (genetic algorithms (GAs)) for selecting
best compute service and VM image.

• A comprehensive experimental evaluation is car-
ried out based on a realistic scenario for verifying
the performance of the proposed decision making
technique.

The paper is structured as follows. First, we dis-
cuss related work in Section 2. Then, the extended
CloudGenius framework is presented in Section 3.
The framework introduces a migration process and
formal model which forms the basis for decision
support within the process. Afterwards, we present
CumulusGenius, a prototypical implementation of the
framework in Section 4. In Section 5, we present a
use case and the results of experiments on the time
complexity and search space of CumulusGenius. We
conclude and discuss future work in Section 6.

2 RELATED WORK

Multi-component web services have been introduced
and defined by the web service community [9]. Multi-
component setups in the cloud are described in the
CAFE framework [10] and in TOSCA [11].

In the context of decision-making and cloud com-
puting, a range of approaches apply service match-
ing using requirements from service level agreements
[12], [13], [14], [15]. Other methods employ decision-
making methods. Saripalli and Pingali [16], Li et
al. [17], and Han et al. [18] proposed multi-criteria
decision-making methods to evaluate decision sce-
narios in the cloud context, including cloud services
and providers. Rehman et al. [19] gave an overview
of multi-criteria approaches in the cloud context.
Moreover, Chan and Chieu [20] provided service
and provider evaluation methods which lack multi-
component support. Dastjerdi et al. [21] considered
virtual machine images in a matchmaking-based ap-
proach.

Multiple approaches for multi-component setups in
the cloud have applied optimization techniques [22],
[23], [24], [25] for selecting hardware resources as
a cloud provider. In contrast, performance measure-
ment techniques [17] compare cloud infrastructure
services to quantitative criteria (throughput, etc.) from
a customer side. However, the need to consider VM
images has largely been ignored. Also, existing ap-
proaches are missing a migration process with trans-
parent decision support and adaptability to custom
criteria.

Khajeh-Hosseini et al. [26] developed the Cloud
Adoption Toolkit that offers a high-level decision
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support for IT system to clouds with the focus on
risk management and a workload cost model. While
we apply AHP to select optimal combination of web
server images (PaaS) and corresponding compute
services (IaaS), Godse et al. [27] applied AHP for
selecting optimal SaaS product.

Zheng et al. [28] proposed an approach to cloud
services’ selection based on similarity of concepts in
parameters based on WordNet. On the other hand,
Kang et al. [29] and Zhang et al. [30] uses ontology
for semantic similarity based cloud service search
and reasoning. While these approaches aids in under-
standing of the configuration of cloud services, they
do not offer any support for automating the process of
migrating web application services to public clouds.

To the best of our knowledge, we are first
to propose a hybrid decision making technique
that combines evolutionary optimization methods,
multi-criteria decision making methods (AHP), and
massively parallel processing Hadoop programming
model to enable fast, optimized and flexible selection
of cloud VM images and corresponding infrastructure
services.

3 CLOUDGENIUS FOR WEB APPLICATIONS

To additionally support migrations of web applica-
tions with a compute cluster architecture (referred
to as web application clusters) to cloud infrastruc-
tures, we propose an extension of the CloudGenius
framework. One feature of the extended framework
is the evolutionary cloud migration process model.
The process model integrates existing migration ap-
proaches and methods to support multi-criteria-based
decisions to select cloud VM images and compute
services for multiple components. In the following
subsections, we present the process model for multi-
component migrations of web application clusters and
give details on the formal model. Moreover, we point
out required user input and flexibilities, and present
methods to select VM images and services from the
abundance of offerings. Finally, we give insights into
the evaluation of clusters considering network costs
and constraints, and look into computational com-
plexities.

3.1 Evolutionary Cloud Migration Process
Migrations of web applications to the cloud are ex-
pected to be linear transitions from the state of ”not
migrated” to ”migrated”. However, web applications
and related software stacks introduce complexity.
Therefore, migrations should involve multiple repe-
titions and reconsiderations of past actions. Cloud-
Genius accommodates the vicissitudes within a cloud
migration by embedding decision support methods
into an evolutionary migration process model. Also,
existing migration strategies can be employed within
the process model.

1
Initial

2
Migrated

migration procedure
3

Web app 
obsolete

migration procedure

deletion

undeployment

cancellation

reactivation

Fig. 3. States in an Evolutionary Cloud Migration

CloudGenius’ migration process model describes
the states of a web application as depicted in a finite
state machine in Figure 3. From an initial state a web
application is migrated by an application engineer
into the cloud with an optional cancellation path.
From its migrated state a web application can be
migrated within the cloud, be it between providers
or services, or due to changes in the software stack.
Eventually, a web application might be replaced or
needs to be disposed and moves to an inactive state.
CloudGenius provides decision support in the tran-
sition phases to a migrated web application, except
reactivation. The migration process model describes
the steps within a transition and embeds the decision
support.

Figure 4 depicts CloudGenius’ evolutionary migra-
tion process model for clusters of web applications
in Business Process Model and Notation (BPMN) 2.0.
The process is divided into two lanes: (1) ”user input”
lane representing application engineers and domain
experts and (2) ”CloudGenius” lane which represents
an implementation of the framework.

The process begins with an initial decision between
a cloud and non-cloud infrastructure. Subsequently,
an engineer states preferences and requirements, and
lets CloudGenius recommend a list of feasible cluster
solutions. Every solution comprises a mapping of a
cluster component to a target platform constituted
by a VM image and a compute service. In case no
satisfying solution has been identified, the process
allows to end an infeasible cloud migration. Other-
wise, the process continues with migration steps still
offering the chance to return to an earlier stage in
the process. Thereby, CloudGenius becomes an evolu-
tionary approach that facilitates cycles in a migration.
In case of an user-initiated abort in the process, an
intentional reset to the fundamental cloud decision
activity (cloud versus non-cloud) is forced. This gives
an engineer the chance to reconsider the fundamental
infrastructure decision or to skip forward and modify
retained preference and requirement statements.

Eventually, an engineer ends up with a success-
fully migrated web application cluster. In case of
discontinuation of the process, a validation that cloud
infrastructures are yet an unsatisfying choice has been
attained. In conclusion, the process model supports
an evolutionary approach to a migration. The evolu-
tionary nature is facilitated through the chances for
reconsiderations by returning to earlier steps within
the process or by reapplying the whole process model
(see Figure 3).
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3.2 Formal Model of CloudGenius
CloudGenius’ formal model is extended with the no-
tion of components (C), compatibilities (D,E,F ) and
network traffic (Nin,Nout) to facilitate clusters. Table
1 summarizes all parameters of the original and the
extended model.

The extended formal model of CloudGenius incor-
porates l components ch which are part of a cluster
F̌ . Furthermore, the model includes m images ai and
n cloud infrastructure services sj of o providers pk. C
is the corresponding set of software components in a
cluster, A the set of VM images, S the set of cloud in-
frastructure services, P the set of cloud providers, and
I the set of component connections. Every VM image
ai, compute service sj and any combination thereof
(xl) owns numerical and non-numerical attributes
noted in the sets Âai , Âsj , B̂ai and B̂sj . χ represents a
value connected with a numerical attribute α or non-
numerical attribute β. Moreover, the model introduces
rA + rS + rX requirements.

F̌ ∗ = arg max((
∑
ch∈C

u(ch, ai, sj)) + c(F ))

s.t. (ai,ch , sj,ch) ∈ D,∀ch ∈ C
(ai,ch , aj,c′h) ∈ E,∀ch, c′h ∈ C
(si,ch , sj,c′h) ∈ F,∀ch, c′h ∈ C

r = true,∀r ∈ RA ∪RS ∪Rch,X , ch ∈ C

(1)

Based on the model, CloudGenius recommends a
best solution for a cluster F̌ with best combinations
(ai, sj) in Xch for every component ch. A best solution
for a cluster has the highest value according to total
benefit versus network traffic costs trade-off evaluated
in a function c(·) for network costs and a utility
function u(·) that considers an engineer’s preferences.
In addition, a best solution needs to conforms with
set D. In D viable combinations of VM images ai
deployable on compute services sj are marked. Com-
patibilities between components are held in sets E and
F . Compatible VM images ai and compute services sj
are marked in E and F respectively. The sets Nout and
Nin hold the expected network traffic for component
relations. In sum, the problem can be expressed as
an optimization problem to find F̌ ∗ with the highest
value as in Equation 1.

3.3 Cluster Modelling
Web application clusters comprise load balancer,
database server, and potentially inter-connected web
and application server components. Web applications
might be divided into inter-connected front-end, busi-
ness logic, and data layers to allow layer-independent
scaling. In practive, web servers and application
servers have merged, for example the Apache Tomcat
and Red Hat JBoss Application Servers. Application
servers not only provide an execution environment
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TABLE 1
Extended Formal Model in CloudGenius

Parameter Description
F̌ cluster to migrate consisting of components C
C = {c1, ..., cl} set of l software components
A = {a1, ..., am} set of m cloud VM images
S = {s1, ..., sn} set of n cloud infrastructure services
P = {p1, ..., po} set of o cloud providers
D = {d1, ..., dq} set of q image-service compatibilities (ai, sj)
E = {(ai, aj)|ai, aj ∈ A)} set of inter-image compatibilities
F = {(si, sj)|si, sj ∈ S)} set of inter-service compatibilities
I = {(ci, cj)|ci, cj ∈ C} set of relations between components
RA = {rA,1, ..., rA,rA} set of rA cloud image requirements
RS = {rS,1, ..., rS,rS} set of rS cloud service requirements
Rch,X = {rX,1, ..., rX,rX } set of rX combination requirements for ch
τh cloud image ai, service sj , provider pk , or combination xl as τh ∈ A∪S∪P ∪X
Âτh = {ατh,1, ..., ατh,t} set of t numerical attributes of ai, sj , pk , xl
B̂τh = {βτh,1, ..., βτh,u} set of u non-numerical attributes of ai, sj , pk , xl
χ(α) value of numerical attribute α in CloudGenius database
χ(β) value of non-numerical attribute β in CloudGenius database
vτh value of h-th τ calculated with (MC2)2

Xch = {xl = (ai, sj)|ai ∈ A, sj ∈ S} set of cloud image and service combinations for ch
Nout = {nout,(ci,cj)|ci, cj ∈ C} set of outgoing traffic between components (in byte)
Nin = {nin,(ci,cj)|ci, cj ∈ C)} set of incoming traffic between components (in byte)

for web applications, but also contain a web server to
handle http requests. Our approach, thus, focuses on
application servers in the cluster modelling.

In this paper, in regards of selection of database
servers, we restrict the feature selection to VM im-
ages (e.g., Bitnami MySQL image [31], 3Tera re-
lational database images [32], and BitNami Post-
gresSQL image [33]) that offer relational database
functionalities. Relational database VM images in-
clude pre-configured and pre-installed traditional re-
lational database systems, e.g., MySQL, SQL Server,
and PostGres. In such database systems, the data is
stored in tables that have fixed schema. SQL is used as
the generic language that allows to execute projections
and insert, delete, and update operations on the data.
Fundamentally, relational databases have proven to
be good at managing structured data, especially in
the application scenario where transactional integrity
(ACID properties) is a requirement. In the future
work, we intend to extend the HMOHM with the
ability to select non-relational database cloud ser-
vices (NoSQL), such as Amazon DynamoDB, HBase,
and MongoDB. Unlike relational database services,
NoSQL services do not yet have support for ACID
transaction principles, but rather offer weaker con-
sistency properties. Besides, data access in NoSQL
systems is typically based on predefined access prim-
itives such as key-value pairs.

In an initial step, an application engineer has to
model the application as a cluster. All components of
the cluster setup must be added as elements ch to set
C and interconnections must be defined in form of
component pairs in set I . The engineer and domain
experts must state the expected amount of outgoing
and incoming data for each component in bytes in
the set Nout and Nin. Some components might be

component 1

component i

component j

component j+2

component n

⋮

⋮

feature: load balancer

feature: load balancer

feature: appl. server

feature: appl. server

feature: appl. server

component j+1 feature: appl. server

Fig. 5. Example of a Cluster Model
added multiple times for scaling, or with distinct re-
quirements and goals for fault-tolerance. Furthermore,
a software feature must be assigned that categorizes
the component. Available feature categories are web
server, relational database server, and load balancer.
A feature limits the set of plausible VM images and is
a mandatory requirement restraining the set of viable
VM images.

The extended CloudGenius approach is capable of
finding a best solution for any combination of inter-
connected components. Nevertheless, we suggest a
typical cluster setup depicted in Figure 5 consisting of
a set of one or more load balancers that are connected
to multiple application servers which are partially
inter-connected.

3.4 Software Component Requirements & Prefer-
ences
Similar to the original CloudGenius process, for each
component application engineers have to formulate
requirements and preferences. Requirements formu-
lation comprises setting constraints on attributes of
VM images (pertaining to web server, application
server, and relational database sever) and compute
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TABLE 2
Requirement Types

Value Type Req. Type Boolean
Numerical Equals χ(ci, α) = vr ∨ χ(cj , α)
Numerical Max χ(ci, α) < vr ∨ χ(cj , α)
Numerical Min χ(ci, α) > vr ∨ χ(cj , α)

Non-numerical Equals χ(ci, β) = χ(cj , β)
Non-numerical Not Equals χ(ci, β) 6= χ(cj , β)
Non-numerical One Of χ(ci, β) ∈ S

Fig. 6. Criteria Hierarchies Overview

services. Table 2 lists requirement filters in the (MC2)2

framework. An attribute can be required to adhere to
a fixed value boundary vr. Alternatively, the attribute
of a component can be included, such as the location
of c1 must not equal the location of c2. The table as-
sumes χ(cH) to be an attribute value when evaluating
τ for ch. Attributes for requirement definitions can
be drawn from Tables 3 and 4 for VM images. For
compute services the attributes can be seen in Tables 5,
6, whereas for combinations the Tables 3 and 4 should
be consulted. Requirements of VM image attributes
need to be defined in set Rch,A, for services in set
Rch,S and for combinations in set Rch,X .

Given the proposed goal hierarchies depicted in
Figure 6, an engineer has to state preferences as
described by the AHP. In addition to the compute
service goals of the original CloudGenius framework,
the attributes CPU Cores, RAM Size and Disk Size
are included in the goal hierarchy. For attributes of
load balancer and web server combinations (see Ta-
bles 3 and 4), two single-levelled hierarchies must be
weighted.

Finally, web application engineers have to state
the weight of the cloud VM image, compute service,
and the combination thereof in the total value of
a solution. Therefore, the weights wa, ws and wattr
need to be determined. Also, some components might
be more important than others. Hence, weights for
the importance of a component within the cluster
have to be determined in wch . Network cost attributes
are not part of the goal hierarchies and weights are
not required to determine the total network costs,
given a network traffic estimation for all components.
However, the importance of network costs wT within
the solution must be weighted. In parallel, the weight
wQ for the value calculated from all other criteria must
be defined.

TABLE 3
VM Image Numerical Attributes

Name Influence Metric Range
Hourly License Price Negative $/h 0-∞ $/h
Popularity Positive % 0-100 %
Age Positive Days 0-∞

TABLE 4
VM image Non-numerical Attributes

Name Example Values
Virtualization Format Xen, VMWare, . . .
Operating System (OS) Linux, Windows, . . .
OS Version Ubuntu 10.4, . . .
Software Feature Application Server, Load Bal-

ancer, Database, . . .
Software JBoss, Nginx, MySQL, . . .
Software Vers. 0.8-alpha,. . .
Implementation Lang. Java, Perl, Ruby, . . .
Supported Impl. Lang.s Java, Perl, Ruby, . . .

3.5 Cloud VM Image and Compute Service At-
tributes
Numerical and non-numerical attributes for VM im-
ages are listed in Tables 3 and 4, for cloud services in
Tables 5 and 6, corresponding to the proposed goal
hierarchies. Attributes of VM images and compute
services are applicable to filters for components of
all feature categories. The selection of attributes is
drawn from own observations and literature on VM
images and services [21], [34], providing a basic set
of attributes essential to cloud VM image and service
selection. However, service attributes have a limited
applicability to VM images. Therefore, we aim at
gradually improving the list of attributes from usage
data of a publicly available prototype [35], [36] and
VM image databases, such as thecloudmarket.com [5]
and BitNami [4]. Moreover, cloud compute services
own multiple numerical attributes that imply a mea-
surement or benchmarking. Therefore, an integration
of existing approaches for costs [37], [26], perfor-
mance, and latency measurements averaged over time
[38] are beneficial.

TABLE 5
Compute Service Numerical Attributes

Name Influence Metric Range
Hourly Price Negative $/h 0-∞ $/h
CPU Cores Positive Cores 0-∞
RAM Size Positive Bit 0-∞
Disk Size Positive Bit 0-∞
CPU Perfomance Positive Flops 0-∞ Flops
RAM Perfomance Positive Ops/s 0-∞ Ops/s
Disk Perfomance Positive B/s 0-∞ B/s
Max. Latency Negative ms 0-∞ ms
Avg. Latency Negative ms 0-∞ ms
Uptime Positive % 0-100%
Service Popularity Positive % 0-100%
Network Send Price Negative $/Byte 0-∞
Network Recieve Price Negative $/Byte 0-∞
Internet Send Price Negative $/Byte 0-∞
Internet Recieve Price Negative $/Byte 0-∞
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TABLE 6
Compute Service Non-numerical Attributes

Name Example Values
Provider Amazon, Rackspace, . . .
Location Country Germany, Australia, . . .
Architecture 32Bit, 64Bit
Owner Amazon, Rackspace, Bitnami,...

In addition to the attributes of VM images and
services, there exist attributes assignable to combi-
nations of VM images and services. Attributes of
combinations are in effect when a VM image is in-
stantiated on a compute service. However, the in-
stantiation of a VM image costs money and time.
Therefore, measuring attributes of combinations is a
considerable effort and filling a database with such
measurement data demands investments. The number
of attributes specific to instantiated VM images can
become immense. For m VM images and n com-
pute services, m × n measurements had to be made.
Also, measuring instantiated VM images demands
specific benchmarking tools such as (i) httperf [39] and
ApacheBench for load-balancers and (ii) TPC-W [40]
for web/application and relational database servers.

Consequently, we leave the choice of combination
attributes to the application engineer and decision-
maker. To lower the costs, the number of VM images
must be decreased by setting strict requirements. The
software feature requirement is a mandatory require-
ment. To make results comparable only VM images
with similar software features should be measured.
In general, CloudGenius can be extended to include
all sorts of software features. However, it is notewor-
thy to mention that any additional feature requires
specific attributes and criteria to be defined.

Nevertheless, by defining and measuring combina-
tion attributes the evaluation becomes more precise
in terms of considered factors. Combination attributes
are included in the evaluation function h(·) in section
3.6.

3.6 Best Cluster
The original CloudGenius framework evaluates VM
images, compute services, and combinations thereof
with an evaluation method based on the Analytic
Hierarchy Process (AHP) created with the (MC2)2

framework. The evaluation method is translated into
three functions that map VM images, compute ser-
vices, and combinations to a value. All functions
determine a normalized value according to a decision-
maker’s preferences and requirements. For web appli-
cation clusters the original approach remains, but with
the addition that evaluations are conducted per com-
ponent in a cluster and, finally, are aggregated into
a whole cluster value. Furthermore, network traffic
needs to be considered in the value. Network traffic
within a provider’s data center is typically cheaper

than traffic over the internet which is needed when a
cluster is distributed over multiple providers.

The component-related functions f(ch, ai, Âai , B̂ai),
g(ch, sj , Âsj , B̂sj ), and h(ch, ai, sj) consider
component-related requirements Rch,A and Rch,S
and weights (see Equations 2, 3 and 4). Function f(·)
returns an evaluation value for a VM image, function
g(·) for a compute service, and function h(·) for every
combination of a VM image and compute service.
Function i(·) merges values from VM image, compute
service, and combination attribute evaluations to a
total combination evaluation value (see Equation 5).

f(ch,ai, Âai , B̂ai) =
|Âai

|∑
j=0

wjχ(αj,ai,+
)

|Âai
|∑

j=0
wjχ(αj,ai,−)

∀r ∈ Rch,A : r = true

0 else

7→ vch,ai

(2)

g(ch,sj , Âsj , B̂sj ) =
|Âsj

|∑
i=0

wiχ(αi,sj ,+
)

|Âsj
|∑

i=0
wiχ(αi,sj ,−)

∀r ∈ Rch,S : r = true

0 else

7→ vch,sj

(3)

h(ch,ai, sj) =

|Â(ai,sj)|∑
l=0

wlχ(αl,(ai,sj),+)

|Â(ai,sj)|∑
l=0

wlχ(αl,(ai,sj),−)

∀r ∈ Rch,X : r = true

0 else

7→ vch,(ai,sj)

(4)
i(ch,ai, sj) =

waf(ai, Âai , B̂ai)

+wsg(sj , Âsj , B̂sj )
+wattrh(ch, ai, sj)

(ai, sj) ∈ D

0 else

7→ vch,(ai,sj)

(5)

For component ch, the best combination has the
value max{vch,(a1,s1), ..., vch,(am,sn)} calculated with
i(·), with all values being comparable on an absolute
[0, 1] scale guaranteed by normalization in the AHP.
In case no alternative meets all the requirements, in a
subsequent step, all alternatives that meet all but one
requirement are considered. This procedure repeats
until a non-empty set of alternatives is found that
fulfills less requirements. Optionally, the CloudGenius
process offers an opt-out to look for non-cloud options
if and only if no solution satisfies the given require-
ments.
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In a multi-component setup, the viable connections
of components are defined by the sets E, F , and I .
The connections included in set I must adhere to the
rules from the sets E and F which define compatible
VM images and services. A feasible solution of a
cluster, comprising combined solution pairs (ai, sj) for
every component, is not only the sum of the values of
all contained ch. Network costs of component inter-
connections affect the quality of a solution, too. Cloud
services of different cloud providers and at different
locations can cause internet traffic costs. Equation 6
shows the ∆ of total network traffic costs (internet and
local network) for a component ch ∈ C connected with
other components according to I . If I includes the
connection (ch, ci) with ci ∈ C, I avoids doubled costs
and will not hold the inverse (ci, ch). T represents the
costs for network traffic for expected communication
of a multi-component cluster solution F̌i. Let Tch,ci,Rl

,
Tch,ci,Sl

, Tch,ci,Rg , and Tch,ci,Sg be the expected cost
of incoming and outgoing local network (Rl, Sl) and
internet traffic (Rg , Sg) between components ch and
ci. These costs are calculated in advance according to
sets Nout and Nin, and the providers’ price scheme
held in a compute service’s attributes.

Tnetwork,F̌i
=

∑
o∈Ich


wT,RT(ch,o),Rl

+wT,ST(ch,o),Sl

provider/location equal

wT,RT(ch,o),Rg

+wT,ST(ch,o),Sg

else

(6)

j(F̌i) =
wQ

∑
ch∈C

wch
i(ch,ai,sj)

wTTnetwork,F̌i,normalized

∀ch, c′h :
(ai, a

′
i) ∈ E

∧(sj , s
′
j) ∈ F

0 else

7→ vF̌i

(7)
All Tnetwork,F̌i

are normalized to (0, 1) scale in AHP.
Equation 7 formulates the function j(·) that calculates
the overall value of a cluster solution instance F̌i.
The value consists of the weighted sum of combined
solution values returned by function i(·) and the
total network costs Tnetwork,F̌i

of a cluster instance
F̌i. Weights reflect the importance of a component if
stated by the user.

After a presentation of recommended solutions, the
migration process continues with a selected cluster so-
lution, deployment of the VM images on the compute
services, and further customization and re-evaluation
cycles by the engineer. With all components deployed
and customized, and after following a migration strat-
egy results in the cluster available on diverse cloud
infrastructure services and distributed over data cen-
ters when stated earlier in the requirements.

3.7 Computational Complexity

The decision problem in multi-component web ap-
plication migrations addressed by CloudGenius is
obviously complex, creating a potentially huge search
space for many VM images, services, and compo-
nents. Hence, it is important to analyze the actual
computational complexity of the approach to ensure
its applicability. We define O of CloudGenius as fol-
lowing:

O(m ∗ |B̂a|+ n ∗ |B̂s|︸ ︷︷ ︸
requirements check

+ m ∗ |Âa|+ n ∗ |Âs|︸ ︷︷ ︸
images & services evaluation

+

m ∗ n ∗ |D|+m ∗m ∗ |E|+ n ∗ n ∗ |F |︸ ︷︷ ︸
feasibility check

+

m ∗ n︸ ︷︷ ︸
combined evaluation

+ (m ∗ n)l︸ ︷︷ ︸
clusters evaluation

)

The computational complexity is proportional to
the number of VM images m, services n, and com-
ponents l. Computations for m images and n services
comprise requirements checks in sets B̂a and B̂s and
evaluations regarding criteria of sets Âa and Âs. In
addition, feasibility checks using the sets D, E, and
F must be executed for all m × n combinations. The
evaluation with the functions f(·), g(·), g(·), and i(·)
add additional complexity. The evaluations implicate
additional computation steps for AHP comprising
normalization of matrices and derivation of global
weights which are not included for simplicity. The
formulated O shows that CloudGenius’ complexity
is dominated by the cluster evaluation which creates
a solution space with (m ∗ n)l clusters (Cartesian
product of combinations). Therefore, the complexity is
expected to grow exponentially in proportion to l, m,
and n. Since CloudGenius searches in the full solution
space, we are confident to find the actual best solution.

3.8 Parallel Genetic Algorithm

Meta-heuristics allow to cope with exponentially
growing computational complexities. In particular,
gargantuan search spaces of discrete solutions can be
searched even without knowledge about the search
space’s structure. While meta-heuristics can cut time
complexities to a fixed limit, they cannot guarantee
an optimal solution. Nevertheless, the accuracy can
be influenced by increasing the granted computation
time. Thereby, meta-heuristics give the option to trade
waiting time for accuracy. When parallelizing meta-
heuristics, computation can be divided into multiple
processing units which can be run on multiple server
instances. This introduces the additional dimension
of costs for computational resources to the trade-
off. Consequently, accuracy can be achieved by long
waiting times or high investments in computational
resources.
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Fig. 7. Structure of a Cluster Solution Candidate

The proposed algorithm facilitates parallel com-
putations and resembles a population-based genetic
algorithm (GA) meta-heuristic due to the discrete
nature of the search problem. The algorithm consists
of four major steps: (1) create initial population, (2)
assignment of fitness values, (3) selection of elite, and
(4) evolution of a population. Step 1 only occurs once
at the beginning of the algorithm, while steps 2–4
repeat until a termination criterion is fulfilled. Either
a certain number of generations have been evolved or
a certain amount of time has passed.

The algorithm expects a database of cloud VM
images and compute services including their compat-
ibilities as described by CloudGenius model. Also, a
cluster model, preferences, and requirements need to
be defined in the model by an engineer. In addition
to the model, three parameters must be set in the
beginning to adjust the GA: (a) population size, (b)
elite size and (c) maximum computation time.

3.8.1 Candidates and Populations

Genetic algorithms search over populations in multi-
ple iterations referred to as generations. Every pop-
ulation consists of a predefined amount of solution
candidates, each representing a viable and discrete
solution to the problem. We propose candidates to be
the cluster solutions F̌i as described in section 3.6.
Figure 7 depicts the structure of a cluster solution
candidate. Every candidate represents the set of com-
ponent mappings to a viable VM image and compute
service combination that can be evaluated with func-
tion j(·). To initiate the GA, an initial population must
be generated. Our algorithm picks cluster solutions
randomly ignoring duplicates and adds them to the
population until it has grown to the expected popu-
lation size (a). After this step the algorithm is ready
to evolve the initial population.

3.8.2 Fitness Value of Candidate

Every population is evaluated to determine the fitness
values of its candidates. Our genetic algorithm em-
ploys the evaluation function j(·) for each candidate
F̌i. Since the AHP determines values of candidates
in a comparison matrix, the whole population must
be known and evaluated together. In particular, for
parallel genetic algorithms this is of special interest
since every parallel evaluation task must be given
the whole set of candidates in a population. For

implementations of the algorithm this leads to a limi-
tation on the population size imposed by the available
memory size of tasked computation units.

3.8.3 Selection of Elite
Based on the fitness values determined in the previous
step, an elite of size (b) can be drawn from the current
population. The elite is represented by the set of
highest ranked solution candidates in the population.
Any non-elite candidates are discarded in the next
generation and replaced by evolved candidates. The
size of the elite has been specified as a parameter in
the beginning.

With the termination of the algorithm a final elite
is returned which includes a best solution candidate
computed by the algorithm. The highest ranked elite
candidate according to its value is the preferred clus-
ter solution which is not guaranteed to be the globally
best cluster solution in the search space.

3.8.4 Evolution of Population
While the elite candidates reside in the population,
non-elite candidates are evolved to create a new gen-
eration and continue the search for best solutions.
How the candidates are evolved depends on whether
the algorithm applies a global or local search. Mutat-
ing candidates in only few attributes, e.g., changing
the mapping of one component to a slightly different
compute service or VM image, potentially leads to a
local search. In contrast, substituting candidates with
random cluster solutions from the search space that
differ in a subset of attributes results in a global
search.

To allow for global and local search we propose two
evolutionary operators: (1) altering a cluster solution
(mutation) and (2) substituting it (nascency). Mutating
a candidate means substituting one of its component’s
solutions with other viable combinations of VM im-
ages and compute services. To generate a better local
search, the substitution strategy should take advan-
tage of the fact that network traffic is commonly free
or cheap when staying within a provider’s network.
Therefore, combination alterations for one or more
components should consider this common pricing
model fact and choose a combination with a compute
service offered by the same provider. Substitution
implies choosing a random solution from the search
space that is not included in the current population.
Both evolutionary operators, (1) mutation and (2)
nascency, are applied for each non-elite candidate
with a 50% chance to balance global and local search.

3.8.5 Termination
Every genetic algorithm requires a termination rule
that forces computations to stop and to accept the
currently best solution candidate. Rules consider the
current quality of the solution, or simply stop after a
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certain number of iterations or time limit. We propose
multiple rules that lead to an eventual termination.
Firstly, the algorithm stops immediately after the sum
of all uniquely discovered solution candidates passes
the number of total individuals in the search space
|{F̌1, ..., F̌n}| = (|A|×|S|)|C|. Therefore, a list of visited
solutions helps to guarantee unique visits. Then, the
excess of the search space can be determined with the
ratio of search space size per population size testing
#(generations) > (|A|×|S|)|C|

max #(individuals in population) . The algo-
rithm halts when the number of generations exceeds
the ratio. Secondly, a general stopping rule ends the
genetic algorithm after a certain amount of time, e.g.,
5 minutes, specified as parameter (c). Thirdly, more
sophisticated stopping rules can halt the algorithm
when, for example, the value of the best solution has
not improved over multiple generations or the actual
population size undercuts the maximum population
size, which means only few individuals have not been
visited.

4 CUMULUSGENIUS: AN IMPLEMENTATION

With CumulusGenius [35] we provide an implemen-
tation of the model and evaluation algorithms of the
framework. The CumulusGenius java library offers a
data model and evaluation algorithms based on the
Aotearoa AHP implementation [8] that enables the
evaluation of VM images, cloud services, combina-
tions thereof, and whole clusters. The parallel genetic
algorithm described in section 3.8 has been imple-
mented [41] using the mahout framework for hadoop
[42]. Mahout includes support for genetic algorithm
implementations using the watchmaker framework
[43], and helps parallelizing and making algorithms
deployable on hadoop clusters [44].

A Google Web Toolkit-based web frontend with
jClouds [45] integration and database of the current
cloud provider landscape is currently under develop-
ment [36].

5 EVALUATION

5.1 Use Case
As multi-component web application system migra-
tion use case, we consider an organization’s applica-
tion engineer. The engineer wants to migrate the oper-
ations of its online digital store from locally managed
physical infrastructure (non-virtualized) to virtualized
cloud infrastructure services. The company had en-
gineered the original application based on multi-tier
architecture to decouple major functionalities across
two components: (a) presentation and business logic
layer with Tomcat 5.x Application servers and (b) data
layer, which stores information in a relational MySQL
5.x database server. A HA Proxy 1.4.x load-balancer
is employed to distribute workload across multiple
application servers. To increase the dependability of

the web application, the application servers shall not
be placed in the same data centers or preferably at
different coasts or continents.

After the organization identified cloud infrastruc-
tures as a target by applying the (MC2)2 evaluation
framework in a first step, the engineer defines the
web server cluster including component dependen-
cies. The cluster comprises two Tomcat AppServer
(feature application server, version > 5.0, and Ubuntu
Linux) and one HA Proxy (feature load balancer with
version > 1.4.1). A MySQL Database Server version
5.0 is already up and running in a cloud data center.
Already deployed web applications persist data to
the given MySQL Database Server. The HA Proxy
is connected to both Tomcats which are further con-
nected to the MySQL database. However, the latter
is not included in the cluster model. Subsequently,
requirements for all components must be set such as
feature, OS, and version. The two Tomcats require a
different locations in order to strengthen the cluster’s
dependability.

The engineer states throughput and costs as high
priority goals, and VM image quality more important
than compute services’. Moreover, evaluation criteria
for VM image and compute service preferences for
both application server components and the load
balancer are weighted in paiwise comparisons.

CumulusGenius owns a database with information
about VM images and compute services from AWS,
Terremark, and Rackspace. As no results were found
for the HA Proxy, the engineer changes the version
requirement to > version 1.4.0 and gains cluster solu-
tions. According to the cluster’s recommendation the
engineer lets CumulusGenius deploy all listed VM
images to assigned compute services with jClouds.
The engineer connects all running components, with
Tomcat servers being placed in the US and in the EU
for dependability and availability reasons. After exe-
cuting a migration strategy and transferring backup
data to the database server, the cluster eventually
becomes available on cloud infrastructure services
and the first full cycle of the migration ended.

Within weeks, the demand rises and additional
Tomcat servers should be added to the cluster. The
engineer re-enters the process cycle repeatedly to
modify the cluster. Each time, CumulusGenius sug-
gests a new mapping, and the engineer deploys VM
images accordingly and connects new deployments
with existing ones. Within the evolutionary process,
the engineer revises the web application deployment
using new experiences and enters the CloudGenius
process occasionally. In every revision, he compares
his past decision with his current objectives and re-
evaluates viable deployment options.

5.2 Experiments
We tested our implementation CumulusGenius in ex-
periments on an EC2 High-Memory Quadruple Extra
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Fig. 8. Time Complexities of Parallel Computations

Large (m2.x4large) instance (8 CPU cores, 26 EC2
Compute Units, and 68.4 GB of RAM) with Ubuntu
10.04 and OpenJDK JRE 6.0 in order to analyze its
solution space and the actual time complexity. To
execute computations with CumulusGenius, we used
whirr to deploy the experiments on a mahout-enabled
hadoop cluster consisting of one master node (name
node, job tracker, and mahout client) and multiple
slave nodes (task tracker and data node). The parame-
ters of the experiments are the number of VM images,
services, and components. VM images and services
are synthetically generated with all attributes having
random, but realistic values. There is a fixed number
of three providers and no requirements are defined
to stress the algorithm with a full solution space.
Components are randomly assigned to a provider and
all inter-connected to each other. When components
are offered by the same provider low network costs
occur. In case of different providers, five times higher
internet costs are assumed. First experiments showed
an explosion in computation time for a growing num-
ber of components l, VM images m and services n. A
cluster of three components and a database of five
VM images and five services of three providers takes
>11,725 seconds (∼3,25h) to find the highest ranked
of 15,625 solutions (three components with 25 viable
VM image and compute service combinations each).
Therefore, the implementation has been enhanced
with parallel threads making it possible to exploit
multiple CPU cores, and AHP’s matrix normalization
has been simplified as this step was identified to
cause tremendous effort. The exponentially growing
effort for additional components in a cluster becomes
obvious with the measurements depicted in Figure 8.
The EC2 instance ran out of memory with four com-
ponents and three VM images and compute services.

Since the search space is extensive, we further an-
alyzed the quality of a simpler naive solution in 100
experiments per l, m, n variation. Instead of finding
the actual best cluster, it is very cheap (∼1 ms) to
neglect network traffic costs and construct a best
solution from every component’s best combination
of VM image and compute service. Table 7 shows
the average number of equal component solutions

TABLE 7
Quality of Naive Solutions vs. Full Evaluation

l m n AVG
Equals

No
Equals

All
Equals

3 3 3 1.7 11% 20%
3 4 4 1.58 10% 17%
3 5 5 1.19 19% 8%
4 2 2 2.87 1% 24%
4 3 3 2.57 3% 19%

TABLE 8
Quality of GA vs. Full Evaluation

l m n GA vs. FE
4 2 2 100%
3 3 3 100%
3 4 4 98%
3 5 5 95%

and the possibility that a naive solution equals the
actual solution in all or none of the components for
different parameters. The results show that for larger
numbers of l, m, and n the chance for an acceptable
naive solution decline and naive solutions are at best
indicators for good solutions.

The genetic algorithm-based approach confirms ex-
pectations to cope with the time complexities and
to provide a handle to find accurate solutions for
large solution spaces depending on the invested time
or money. In further experiments we compared the
quality of solutions computed with the GA imple-
mentation using the mahout framework. Therefore,
we compare the results with the actual best solu-
tion returned by the parallelized full evaluation that
searches the whole solution space. The quality ratio
shows how good the GA’s solution is compared to the
actual solution found with a full evaluation (FE). The
GA was run with the parameters (a) population size
of 100, (b) elite size of ten and (c) eventual stopping
at five minutes.

To test the power and quality of the GA imple-
mentation in gargantuan solution spaces, we used a
five and eight node hadoop cluster (EC2 m2.x4large)
and computed ten solutions each for five components,
10,000 VM images and variations of ten and thirty
services of five providers, giving the algorithm five
and ten minutes time. The number of 10,000 AMIs
is derived from the amount of AMIs available in the
Amazon EC2 Region us-east-1 (April 2012) and gives
a realistic estimate. The algorithm succeeded to find
a solution, while a full non-parallelized evaluation
would fail due to heap space exceedings. To get a
grasp on how good the solution of the GA actually is,
the naive solution serves as the only benchmark, albeit
being worse than the actual solution. Table 9 sheds
some light on the ratio of the GA solution versus the
naive solution calculated in average of ten runs. With
more time and more compute resources the GA tends
towards better solutions and beats the naive solution
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TABLE 9
Quality of GA Solutions

time nodes l m GA vs.
Naive

5 5 10 10,000 0.85
5 5 30 10,000 0.65
5 8 10 10,000 0.92
5 8 30 10,000 0.77
10 5 10 10,000 1.13
10 5 30 10,000 1.01
10 8 10 10,000 0.93
10 8 30 10,000 1.15

that omits the influence of network costs.
In summary, the experiments show that the GA

approach succeeds where a full evaluation of the
solution space is not possible. However, the quality
of the results cannot be guaranteed to a predefined
level. Increasing investments in time or additional
compute resources allows to improve the quality since
the chances for the genetic algorithm to find the best
solution improve. Additional time allows the GA to
search over more generations with same amount of
compute resources, while additional resources allow
to evaluate more generations in the same time. The
current GA implementation beats the naive solution
with more than ten minutes of time and small clusters
of five to eight nodes. Improvements in the implemen-
tation and hadoop setup might reduce computation
times and increase solution quality to an yet unknown
degree.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented the extended CloudGenius
framework, which provides a hybrid approach that
combines multi-criteria decision making technique
with evolutionary optimization technique for: (i) help-
ing application engineers with the selection of the best
service mix at IaaS layer and (ii) enabling migration
of web application clusters distributed across clouds.

We believe that CloudGenius framework leaves
space for a range of enhancements and provides yet
an amicable approach. Nevertheless, a major issue in
cloud service selection is the domain of available data
in the decision, i.e., completeness and freshness of a
database with VM images and services, the criteria
catalogs, and the quality and correctness of measured
values. To address these issues, we intend to integrate
cloud benchmarking approaches [38], [46] and exist-
ing databases such as CloudHarmony, bitnami, and
thecloudmarket.com [47], [4], [5]. Including extended
meta-data information with a crawling approach [48]
allows to gather more details on images and make
them more differentiable, but requires additional ef-
fort to build a database.

Additionally, we plan to connect the migration
process with a monitoring of the deployed system

to trigger re-evaluation and decision-making in an
evolutionary migration actively.

CloudGenius expects VM images to feature one
component stack, such as an application server stack,
instead of whole software stacks (e.g., Bitnami Word-
Press stack consisting of web server and database) or
basic VM images containing an OS only. Future work
should estimate customization efforts and a trade-off.
Additionally, explicit support for hybrid cloud setups,
output in deployment languages, and middleware
and persistence layer services will be explored in
future work. It is planned to conduct an evaluation
over several month with a German infrastructure
provider using the CumulusGenius prototype and its
web-frontend [36]. In the study not only its applica-
bility are of interest, but also time measurements of
migration process cycles.

From a web application and IT system cluster point
of view, important practical challenges exist, such as
(a) how to model existing web applications or IT
systems as a cluster with a notation, (b) how to ex-
press and automatically handle dependencies of com-
ponents, and (c) how to undertake service selection
and deployment processes that consider these mod-
elled dependencies. In future work, we aim to tackle
this by adapting deployment modelling languages
to consider control and data flow dependencies. We
will also explore integration of existing configuration
management tools such as Chef, Puppet, and whirr
to CumulusGenius for configuring, deploying, and
managing cloud-hosted IT system clusters.
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