
Savant: Automatic Parallelization of a Scheduling
Heuristic with Machine Learning

Fréd́eric Pinel, Pascal Bouvry
FSTC/CSC/ILIAS

University of Luxembourg
Email: frederic.pinel@uni.lu

pascal.bouvry@uni.lu

Bernab́e Dorronsoro
LIFL

University of Lille
France

Email: bernabe.dorronsorodiaz@inria.fr

Samee U. Khan
Department of Electrical and Computer Engineering

North Dakota State University
Fargo, USA

Email: samee.khan@ndsu.edu

Abstract—This paper investigates the automatic parallelization
of a heuristic for an NP-complete problem, with machine learn-
ing. The objective is to automatically design a new concurrent
algorithm that finds solutions of comparable quality to the
original heuristic. Our approach, called Savant, is inspired from
the Savant syndrome. Its concurrency model is based on map-
reduce. The approach is evaluated with the well-known Min-Min
heuristic. Simulation results on two problem sizes are promising,
the produced algorithm is able to find solutions of comparable
quality.
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I. I NTRODUCTION

Parallel algorithms are becoming necessary in every aspect
of computing. Previously, parallelism was only needed in
specific cases, typically for performance. The default computer
is now a parallel machine [1]. This trend is a consequence
of the evolution of computer processors, where physical
limits are forcing chip designers to reduce the clock fre-
quency of processors, and packaging more of them. Current
computers now come with multiple processors, which are
themselves multi-core. In addition, alternative parallelco-
processors are common, such as graphics processing units
(GPU). Mass markets are also favoring distributed systems
such as clusters, assembled from off-the-shelf componentsin
contrast to specialized parallel hardware [2]. Finally, recent
Internet trends, such as cloud computing, the ubiquity of
JavaScript virtual machines and mobile devices add another
level in parallelism, by massively distributing computation
across cloud servers and browsers. However, the parallelism
offered by hardware requires concurrent algorithms to be fully
exploited. Recent algorithms seek concurrency as much as
possible, but programming languages for concurrent program
are only appearing [3], [4], [5], [6], and manually designing a
concurrent program remains a difficult task. Moreover a great
number of existing programs need to be adapted to the parallel
architectures.

In light of this trend, we are investigating a method to
automatically parallelize existing algorithms. This is ofcourse
a challenging problem. As a first step, we limit the problem’s
scope in several ways.

• We relax a common constraint that the parallel version
must be similar to the original algorithm (equivalent
instructions, in a different order). We are looking to
produce a different algorithm that nevertheless provides
the same function.

• We consider the problem a supervised learning problem,
and leverage the efficiency of modern machine learning
techniques. This is inspired by the Savant syndrome (Sec-
tion III-B), which hints to a parallel machine performing
seemingly sequential tasks. By analogy, we consider that
the parallel version of the original algorithm must learn
the behavior of the original one.

• We evaluate our proposed approach on a specific al-
gorithm, a well-known heuristic for an NP-complete
scheduling problem. This is motivated by three factors.
First, we are familiar with this problem and its state-of-
the-art parallel solvers. This is advantageous to assess the
results obtained. Second, optimization problems highlight
the key point of our approach: the design of different
algorithms that solve the same problem. Indeed, solutions
to optimization problems are evaluated with a fitness
function, regardless of how this solution was found. This
helps us abandon existing algorithms, as long as the
solutions are comparable, and the production method is
parallel. Finally, solving combinatorial problems is com-
pute intensive, and parallel heuristics is an active research
area that could benefit from automatic parallelization. The
ultimate intention is to evaluate this approach on other
algorithms and problems.

Our contribution is a method to automatically generate a
parallel version of the chosen heuristic.

Section II describes the problem and reviews previous work.
Section III presents and motivates our approach, called Savant.
Section IV shows results of the Savant algorithm.

II. PROBLEM STATEMENT

In this section, we present the automatic parallelization
problem. Section II-A reviews past and current automatic
parallelism. Section II-B presents the scheduling problemthat
we evaluate our approach on.



A. Automatic Parallelization

Parallelism was initially considered a part of the automatic
build of executables from source code. This optimization step
is usually approached by applying source-to-source transfor-
mations [7], [8]. Transformations include loop-unrolling, data
access patterns, and rely on careful inspection of data depen-
dencies to extract concurrency from the source program. This
approach to parallelization preserves the algorithm and most
of the source code, by applying transformations that respect
the semantics of the original program. The transformationsare
carefully defined, so as to guarantee identical behavior, and
may even rely on formal reasoning [9]. Other authors apply
AI techniques to identify the transformations and their order
of application. Evolutionary algorithms and machine learning
were applied in [10], [11], [12].

As mentioned, our focus is not to preserve most of the
source program, nor even the algorithm, but to find new algo-
rithms and code. Genetic Programming (GP) [13] is a method
to achieve such a goal. Indeed, GP aims to automatically
evolve a program that displays a set of properties. Parallelism
can be one of them. A combined evolutionary and source-
to-source transformation technique was presented in [14].
There is little detail presented however. In [15], [16], [17],
the authors use GP to evolve a program in order to achieve
parallelism. The programs found are evaluated both in terms
of correctness (their purpose) and their degree of parallelism.
Evolving the program allows for easier evaluation of the
parallelism by executing the code. We find that the programs
evolved are relatively simple (O(100) assembly instructions),
and require considerable effort to find (the stopping condition
is the absence of progress in the last106 − 108 evolutions).
GP is a general technique which comes with its drawbacks,
such as the computational effort required. Also, defining
parallelism as a fitness function is an elegant formulation
of the problem, but is not reliable regarding the parallelism
obtained. We believe more specific, thus efficient, approaches
can be used. Finally, genetic algorithms can be used to evolve
rules for computation, instead of a solution to a problem [18].
Therefore, such an approach could in principle be used for
automatic parallelization but we have not found previous work.

B. The Min-Min Heuristic for the Independent Task Mapping
Problem

We decide to focus on a certain class of algorithms and
programs, those solving combinatorial optimization problems.
Specifically, we will be parallelizing an algorithm for a known
optimization problem of the scheduling domain: the indepen-
dent task mapping problem. This problem assumes a set of
independent computing tasks, which can be processed by a set
of heterogeneous resources, or machines. Each task can only
be processed by a machine. The estimated time to complete
(ETC) each task, on each machine, is given. This assumption is
usually made in the literature [19], [20], [21]. An ETC example
is:





t1 t2 t3 ...

m1 12.3 17.8 45.7 ...

m2 15.9 18.3 23.0 ...



,

where taskt1 takes 12.3 units of time to execute on machine
m1.

The optimization problem is how to assign the tasks to the
resources (to map) such that the finishing time of the last
task, over all the machines, is minimum. This finishing time
is called makespan in the scheduling literature. The makespan
minimization problem is NP-complete [22]. A solution to the
problem can be represented as an array of integers, where
solution[t] = m means that task t is assigned to machine
m. The makespan of this solution is time when the last task
finishes. The order in which the tasks are executed on a
machine is not important. The heuristic chosen for the studyis
the well-known Min-Min resource allocation algorithm [23],
[19]. It is a deterministic heuristic that runs inO(MT 2), for
M machines and T tasks. It can be manually parallelized with
some effort, and for a specific architecture only (i.e. for the
GPU [24]).

III. A PPROACH

Here we present our approach to automatic parallelization.
Our starting point is a generic parallel algorithm that satisfies
our concurrency objectives, Section III-A. We present a source
of inspiration for our approach in Section III-B, and describe
how we specialize the generic parallel algorithm to solve the
optimization problem in Section III-C.

A. Defining a Target Parallel Model

In Section II-A we mentioned that the previous GP ap-
proaches considered parallelism as an objective, which yields
uncertain results. Here, we pose the problem by specifying
a target parallel model. Our approach will only produce
algorithms that conform to this model, thus guaranteeing the
level of parallelism.

The chosen algorithmic model is a single iteration of a
map-reduce application [25]. Open source and free software
frameworks exist for this model, on different architectures
(GPU, multi-core, clusters), which makes it a practical choice.
Moreover, theoretical works have found it equivalent to BSP
and PRAM [26], both well-studied parallel models. In this
model, the input data is first processed independently by many
mappers, their results are then further processed independently
by reducers. Independent processing means that the mappers
and reducers do not communicate or otherwise synchronize.
In addition to this qualitative definition of the parallel model,
we need a high number of mappers or reducers, regardless of
the problem size. Also, the new algorithms must scale with
respect to problem size.

B. Analogy with the Savant Syndrome

Our automatic parallelization question can be restated as:
how to automatically design a scalable and massively parallel
map-reduce algorithm, that finds solutions to the independent



task mapping problem of comparable quality (fitness) to the
Min-Min heuristic.

We looked for previous occurrences where a massively par-
allel machine (composed of weak computing nodes, to ensure
the reliance on parallel processing), was able to solve small,
sequential problems in a short time. This question lead to the
Savant syndrome [27], [28], [29], [30], [31]. People displaying
symptoms of this syndrome can compute small sequential
tasks, such as calendar computation (finding the day of the
week for a given date), in a very short time (700 msec), using
unknown methods. Their methods for calendar computation
are unknown because experiments showed that the distribution
of the response time does not match those of known computer
programs. Also, Savants can perform other date computations
with similar performance while this is more time-consuming
for a computer algorithms (and reported impossible with
classical algorithms [29]). Although not fully understood, the
Savants seem to be learning pattern-recognition rules from
data, which are later applied in parallel to new input. This
matches their ability to perform calendar computation while
ignoring complicated details of calendars, and to enumerate
prime numbers while ignoring what a prime number is, or
how to multiply and divide. The mental activities that some
Savants (such as D. Tammet) describe incline us to believe that
their learning method is supervised. Finally, Savants seemto
manipulate probabilities: their answers are not 100% correct,
and although they are not very proficient in mathematics in
general, they understand probabilities better than average. The
learned pattern matching is also consistent with other studies,
such as chess perception in players of different skill [32],[33].

C. Application to Automatic Parallelization

Exploiting the analogy of the Savant syndrome for the reso-
lution of the independent task mapping problem is straightfor-
ward. As presented in Section II-B, a solution to the problem
is an array of integer numbers. There is much fewer machines
than tasks to assign, usually hundreds of tasks, and×32 less
machines.

The mappers in the map-reduce model are multi-class
classifiers. Each classifier must correctly assign the task to
a machine. Correctness means choosing the same machine as
Min-Min, because this is the algorithm we are parallelizing.
The mappers’ input is the ETC matrix. However each mapper
does not need all or the same ETC data (Section IV-A provides
more details). The classifiers result from supervised learning,
in analogy to the Savant syndrome, and because it is well-
suited to the parallelization problem (we are given an original
algorithm or program to parallelize, which can generate as
much training data as required). This is another advantage of
the classification approach over genetic programming, which
randomly proposes algorithms in hope of meeting the objec-
tives. We use one mapper per task in the independent task
mapping problem. This is high number of mappers for a given
problem instance, and scales linearly with the problem size
(the number of tasks). Also, the classifiers work independently
of each other.

Fig. 1. Overview of the Savant parallel algorithm

The reduce step collects the mappers’ output for all tasks
and assembles the final solution. A simple reducer can do
nothing: just relay the classifiers’ solution. However, theinde-
pendent task mapping problem optimizes a fitness (minimizes
makespan), and this fitness is not exploited so far. The reduce
step could improve the solution provided by the mappers by
exploiting the fitness objective. The reducer we propose is a
random local search. It performs a fixed number of random
swaps in the solution (swaps machine assignments between
two randomly selected tasks) and updates the solution when
a swap improves fitness. This reducer runs in constant time,
because it only depends on the number of swaps chosen, and
is not problem specific (beyond the fitness calculation). The
parallel algorithm produced is presented in Figure 1. The input
is an independent task mapping problem instance, an ETC
matrix of sizemachines × tasks. The various M boxes are
the mappers, one for each task. The R box is the reducer, in
this diagram the simple reducer is shown (relays the classifiers’
results).

The classifiers are trained under supervised learning, with
ETC and their solution obtained by Min-Min. The next section
details the parameters for the training and evaluation of the
approach.

IV. RESULTS

This section presents the simulation setup and the results
observed.

A. Setup

The ETC were randomly generated according to [19]. The
machines and tasks are sorted. The low-indexed tasks have
smaller computation time than the higher indexed tasks. The
low-indexed machines are faster than the hight indexed ma-
chines. This is necessary to train the classifiers with common
index values for tasks and machines across ETC instances.
Two problem sizes are used in the simulations, 128 tasks x 4
machines, and 512 tasks x 16 machines. The intention is to
observe the behavior of the Savant algorithm when problem
size increases.



60
65

70
75

80
85

90
95

task

si
m

ila
rit

y 
(%

)

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

savant per task
savant average

Fig. 2. Savant solution similarity for128 × 4 problems (without the local
search reducer)

The classifiers are multi-class SVM, implemented in lib-
SVM [34]. We choose the recommended default parameters.
The kernel chosen is RBF. Cross-validation is used to select
the parameters. 600 ETC different instances are used in the
training phase. 100 ETC different instances are used in the
testing phase. The ETC input is scaled.

An important design decision of the Savant algorithm is
the selection of features to use for the SVMs, in training and
testing. Choosing the entire ETC input data for classification
provides poor results, in addition to longer training time.We
have chosen, after a short investigation, to use a simple rule:
the features used for the classifier of a task are the values
of the ETC column of that task. We investigated the use of
neighboring columns, in addition to the task’s ETC column,
but with no significant improvement. In scheduling terms,
these values are the estimated completion times of the task
on all machines. Therefore to train or test the SVM for each
task, the features are first extracted from the ETC.

When used, the local search reducer (Section III-C) is run
for 10,000 iterations.

B. Savant Solution Similarity

In this section, we compare the solutions found by the
Savant algorithm to the ones found by Min-Min. The reducer
simply assembles the results from the individual task classifi-
cation, the local search reducer is not used. This comparison
reflects the classifiers accuracy in predicting the Min-Min
assignments. The accuracy measure is the count of correct
classification over the 100 test instances, per task.

Figure 2 shows that the accuracy for the smaller tasks and
bigger tasks is low. The accuracy for the smaller tasks is
acceptable because they have little influence on the fitness
function. The average accuracy is 82%, which is quite good.

Figure 3 shows that the accuracy of the classifiers is worse
than for the smaller problem. This is perhaps due to the
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Fig. 3. Savant solution similarity for512× 16 problems (without the local
search reducer)

increased number of machines (classes) to assign tasks to,
although we kept the same number of training instances. Also,
this may point to a weakness of the common feature selection
rule for all tasks.

C. Savant Solution Quality

In this section, we evaluate the quality of the solutions
found by the Savant algorithm. Three comparisons are shown.
The leftmost boxplot (labeled ”savant vs minmin”) reports
the differences in solution quality (fitness, expressed in %)
between the Savant algorithm without the local search reducer
and the original Min-Min algorithm, for the same test ETC
instances. The middle boxplot (labeled ”savant+ls vs minmin”)
shows the same comparison but with the local search reducer
presented in Section III-C. The local search in the reducer
may be responsible for these results. To measure this possible
effect, we add the rightmost boxplot (labeled ”savant+ls vs
ls”) to compare the Savant and local search reducer with the
same local search applied to random solutions.

Figure 4 shows boxplots results for the smaller instances.
We note that the Savant algorithm using only classifiers
produces very good results, 10% worse in median than Min-
Min. With the local search reducer, Savant results are very
good because the algorithm actually finds better solutions than
Min-Min. The rightmost boxplot tells us that the classifiersdo
play a role in the quality of the solutions found.

Figure 5 shows results for the larger instances. We see that
the degraded accuracy observed in Figure 3 impacts the quality
of the solutions found. However, the Savant with the local
search reducer still produces good results. The rightmost box-
plot shows that the Savant classifiers contribute significantly to
the quality of the solutions found. However, the poor results
from the random solutions with local search are due to the
same number of iterations used, while the solution is bigger.
In both problem sizes, we notice that the local search reducer
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Fig. 4. Savant solution quality for128× 4 problems
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Fig. 5. Savant solution quality for512× 16 problems

significantly reduce the variance in the results.

V. CONCLUSIONS

This paper investigated the possibility of automatically par-
allelizing a heuristic for a combinatorial optimization problem.
The long term goal is to find a parallelization method applica-
ble to as many algorithms as possible. The approach presented,
Savant, contrasts with previous work: we defined a generic
parallel pattern-matching engine (suited to map-reduce) that
learns the algorithm to parallelize. The parallel algorithm
produced is completely different from the original sequential
algorithm, yet achieves the same results. This concept is easier
to apply with an optimization problem, because solutions are
compared on quality, and not similarity.

We consider the results presented promising. The Savant
algorithm provides comparable solutions to the original algo-
rithm. However, there is much room for improvement.

The optimization problem instances addressed are not large,
and the original algorithm (Min-Min) is fast on such problem
sizes. Although our initial goal is to automatically design
competitive parallel algorithms, rather than rival on execution

speed, because of the on-going trends in computing architec-
tures. However, the degraded accuracy and solution quality
when the problem size increases needs to be addressed. We
plan to use more training samples when the number of classes
increases, as is the case when problem size increases.

A more fundamental improvement is the feature selection
for the tasks SVMs. We used a simple rule, common to all
task SVMs (that nevertheless achieves good results): select
the task’s ETC column. We are currently investigating the
use of different feature selection rules for each task, given
the tasks’ differences. One alternative is to use differentETC
columns for each task’s classifier. Another alternative is to use
elements of the ETC matrix, instead of columns. We plan to
automatically discover such rules, so as to meet our goal of
automatic parallelization.

A minor improvement is the re-design of the reducer step,
into a parallel version.

Other future work will investigate if the Savant algorithm is
suitable for different, more elaborate and thus time-consuming,
algorithms for the same optimization problem. Also, we need
to understand how this approach performs on different prob-
lems altogether.
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