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Abstract—This paper investigates the automatic parallelization
of a heuristic for an NP-complete problem, with machine learn-
ing. The objective is to automatically design a new concurrent
algorithm that finds solutions of comparable quality to the
original heuristic. Our approach, called Savant, is inspired from
the Savant syndrome. Its concurrency model is based on map-
reduce. The approach is evaluated with the well-known Min-Min
heuristic. Simulation results on two problem sizes are promising,
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We relax a common constraint that the parallel version
must be similar to the original algorithm (equivalent
instructions, in a different order). We are looking to
produce a different algorithm that nevertheless provides
the same function.

We consider the problem a supervised learning problem,
and leverage the efficiency of modern machine learning

the produced algorithm is able to find solutions of comparable

quality techniques. This is inspired by the Savant syndrome (Sec-

tion 1I-B), which hints to a parallel machine performing
seemingly sequential tasks. By analogy, we consider that
the parallel version of the original algorithm must learn
the behavior of the original one.
|. INTRODUCTION o We evaluate our proposed approach on a specific al-
gorithm, a well-known heuristic for an NP-complete

Parallel algorithms are becoming necessary in every aspect scheduling problem. This is motivated by three factors.
of computing. Previously, parallelism was only needed in  First, we are familiar with this problem and its state-of-
specific cases, typically for performance. The default cotep the-art parallel solvers. This is advantageous to assess th
is now a parallel machine [1]. This trend is a consequence results obtained. Second, optimization problems highligh
of the evolution of computer processors, where physical the key point of our approach: the design of different
limits are forcing chip designers to reduce the clock fre- algorithms that solve the same problem. Indeed, solutions
quency of processors, and packaging more of them. Current to optimization problems are evaluated with a fitness
computers now come with multiple processors, which are function, regardless of how this solution was found. This
themselves multi-core. In addition, alternative paralbel- helps us abandon existing algorithms, as long as the
processors are common, such as graphics processing units solutions are comparable, and the production method is
(GPU). Mass markets are also favoring distributed systems parallel. Finally, solving combinatorial problems is com-
such as clusters, assembled from off-the-shelf comporients  pute intensive, and parallel heuristics is an active rebear
contrast to specialized parallel hardware [2]. Finallycert area that could benefit from automatic parallelization. The
Internet trends, such as cloud computing, the ubiquity of ultimate intention is to evaluate this approach on other
JavaScript virtual machines and mobile devices add another algorithms and problems.
level in parallelism, by massively distributing computei . Our contribution is a method to automatically generate a
across cloud servers and browsers. However, the parailelis . -

. . parallel version of the chosen heuristic.
offered by hardware requires concurrent algorithms to b fu . . . :
exploited. Recent algorithms seek concurrency as much §gct|on Il describes the pr.oblem and reviews previous work.
possible, but programming languages for concurrent pmgrgect!on [l presents and motivates our approa_ch, calledr8av
are only appearing [3], [4], [5], [6], and manually desigpia Section IV shows results of the Savant algorithm.
concurrent program remains a difficult task. Moreover atgrea
number of existing programs need to be adapted to the plaralle [I. PROBLEM STATEMENT
architectures.

In light of this trend, we are investigating a method to In this section, we present the automatic parallelization
automatically parallelize existing algorithms. This isoofurse problem. Section II-A reviews past and current automatic
a challenging problem. As a first step, we limit the problem’sarallelism. Section 1I-B presents the scheduling probilkat
scope in several ways. we evaluate our approach on.
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A. Automatic Parallelization bttty .
my 123 17.8 457 .|,
Parallelism was initially considered a part of the automati me 15.9 18.3 23.0
build of executables from source code. This optimizati@p st
is usually approached by applying source-to-source toansf
;nca::t(lac;r;s [;Et’e[rsn]é T;igs:glr mgrglocr;sré?lj“ij:: Ig;ﬁ;ﬁrgf gl;[mt?e The optimization problem is how to assign the tasks to the
>S P ' y P Pfsources (to map) such that the finishing time of the last
dencies to extract concurrency from the source prograns Thi . S P .
o . task, over all the machines, is minimum. This finishing time
approach to parallelization preserves the algorithm andtmo : N
. g is called makespan in the scheduling literature. The malesp
of the source code, by applying transformations that reaspec. . .~ . blem is NP I 291 A soluti h
the semantics of the original program. The transformatares minimization problem is NP-complete [22]. =0 ution to the
carefully defined, so as to uaranteé identical behaviat ang]robIem can be represented as an array of integers, where
y ’ guare ' “solution[t] = m means that task t is assigned to machine
may even rely on formal reasoning [9]. Other authors apply . S
. . . . ; . The makespan of this solution is time when the last task
Al techniques to identify the transformations and theiresrd

. . . . ) finishes. The order in which the tasks are executed on a
of application. Evolutionary algorithms and machine |éagn o . -
S machine is not important. The heuristic chosen for the stady
were applied in [10], [11], [12].

i , the well-known Min-Min resource allocation algorithm [23]
As mentioned, our focus is not to preserve most of theg) |t is a deterministic heuristic that runs ®(MT?), for

source program, nor even the algorithm, but to find new algpy yachines and T tasks. It can be manually parallelized with
rithms and code. Genetic Programming (GP) [13] is a meth@d e effort, and for a specific architecture only (i.e. foe th
to achieve such a goal. Indeed, GP aims to automauca@pu [24]).

evolve a program that displays a set of properties. Pasatiel
can be one of them. A combined evolutionary and source- I1l. A PPROACH

to-source transformation technique was presented in [14]. . o
There is little detail presented however. In [15], [16], J17 Here we present our approach to automatic parallelization.

the authors use GP to evolve a program in order to achi€y&" Starting point is a generic parallel algorithm that fes
parallelism. The programs found are evaluated both in tenfidr concurrency objectives, Section I1I-A. We present aseu
of correctness (their purpose) and their degree of paisatiel of inspiration .fo_r our approaqh in Section III—_B, and deberi
Evolving the program allows for easier evaluation of thBOW We specialize the generic parallel algorithm to sohe th
parallelism by executing the code. We find that the prograrfBtimization problem in Section III-C.
evolved are relatively simple (O(100) assembly instrut)o
and require considerable effort to find (the stopping caoulit
is the absence of progress in the laef — 10% evolutions). In Section II-A we mentioned that the previous GP ap-
GP is a general technique which comes with its drawbackwoaches considered parallelism as an objective, whiddsyie
such as the computational effort required. Also, definingncertain results. Here, we pose the problem by specifying
parallelism as a fitness function is an elegant formulatign target parallel model. Our approach will only produce
of the problem, but is not reliable regarding the paralielis algorithms that conform to this model, thus guaranteeirg th
obtained. We believe more specific, thus efficient, apprescHevel of parallelism.
can be used. Finally, genetic algorithms can be used to @volv The chosen algorithmic model is a single iteration of a
rules for computation, instead of a solution to a probleni.[18map-reduce application [25]. Open source and free software
Therefore, such an approach could in principle be used fsameworks exist for this model, on different architectire
automatic parallelization but we have not found previouskwo (GPU, multi-core, clusters), which makes it a practicalico
Moreover, theoretical works have found it equivalent to BSP
and PRAM [26], both well-studied parallel models. In this

E' Elhe Min-Min Heuristic for the Independent Task Iv"”‘ppin%odel, the input data is first processed independently byyman
roblem mappers, their results are then further processed indepépd

We decide to focus on a certain class of algorithms afty reducers. Independent processing means that the mappers
programs, those solving combinatorial optimization peots. and reducers do not communicate or otherwise synchronize.
Specifically, we will be parallelizing an algorithm for a kmo In addition tq this qualitative definition of the parallel o,
optimization problem of the scheduling domain: the indeped’€ need a high number of mappers or reducers, regardless of
dent task mapping problem. This problem assumes a settlg problem size. Also, the new algorithms must scale with
independent computing tasks, which can be processed by af§&Pect to problem size.
of heterogeneous resources, or machines. Each task can aonly _
be processed by a machine. The estimated time to complBte”Analogy with the Savant Syndrome
(ETC) each task, on each machine, is given. This assumion i Our automatic parallelization question can be restated as:
usually made in the literature [19], [20], [21]. An ETC exdmp how to automatically design a scalable and massively pgrall
is: map-reduce algorithm, that finds solutions to the independe

where taskt; takes 12.3 units of time to execute on machine
1-

A. Defining a Target Parallel Model
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task mapping problem of comparable quality (fitness) to the
Min-Min heuristic.

We looked for previous occurrences where a massively par-
allel machine (composed of weak computing nodes, to ensure
the reliance on parallel processing), was able to solvelsmal
sequential problems in a short time. This question lead &o th
Savant syndrome [27], [28], [29], [30], [31]. People digpiey
symptoms of this syndrome can compute small sequential
tasks, such as calendar computation (finding the day of the
week for a given date), in a very short time (700 msec), using
unknown methods. Their methods for calendar computation
are unknown because experiments showed that the distnibuti
of the response time does not match those of known computer
programs. Also, Savants can perform other date compugation Fig. 1. Overview of the Savant parallel algorithm
with similar performance while this is more time-consuming
for a computer algorithms (and reported impossible with
classical algorithms [29]). Although not fully understodtie The reduce step collects the mappers’ output for all tasks
Savants seem to be learning pattern-recognition rules framd assembles the final solution. A simple reducer can do
data, which are later applied in parallel to new input. Thigothing: just relay the classifiers’ solution. However, ihee-
matches their ability to perform calendar computation ehilpendent task mapping problem optimizes a fitness (minimizes
ignoring complicated details of calendars, and to enuraeranakespan), and this fitness is not exploited so far. The reduc
prime numbers while ignoring what a prime number is, atep could improve the solution provided by the mappers by
how to multiply and divide. The mental activities that somexploiting the fitness objective. The reducer we propose is a
Savants (such as D. Tammet) describe incline us to beliate ttrandom local search. It performs a fixed number of random
their learning method is supervised. Finally, Savants seemswaps in the solution (swaps machine assignments between
manipulate probabilities: their answers are not 100% ctyretwo randomly selected tasks) and updates the solution when
and although they are not very proficient in mathematics & swap improves fitness. This reducer runs in constant time,
general, they understand probabilities better than aeefHige because it only depends on the number of swaps chosen, and
learned pattern matching is also consistent with otheriesiid is not problem specific (beyond the fitness calculation). The
such as chess perception in players of different skill [B23]. parallel algorithm produced is presented in Figure 1. Tipatin

o ] o is an independent task mapping problem instance, an ETC
C. Application to Automatic Parallelization matrix of sizemachines x tasks. The various M boxes are

Exploiting the analogy of the Savant syndrome for the resthie mappers, one for each task. The R box is the reducer, in
lution of the independent task mapping problem is straaghtf this diagram the simple reducer is shown (relays the classifi
ward. As presented in Section 1I-B, a solution to the problenesults).
is an array of integer numbers. There is much fewer machinesThe classifiers are trained under supervised learning, with
than tasks to assign, usually hundreds of tasks, abiless ETC and their solution obtained by Min-Min. The next section
machines. details the parameters for the training and evaluation ef th

The mappers in the map-reduce model are multi-clagpproach.
classifiers. Each classifier must correctly assign the task t
a machine. Correctness means choosing the same machine as IV. RESULTS
Min-Min, because this is the algorithm we are parallelizing
The mappers’ input is the ETC matrix. However each mapp
does not need all or the same ETC data (Section IV-A provid
more details). The classifiers result from supervised lagrn
in analogy to the Savant syndrome, and because it is wéﬁ'— Setup
suited to the parallelization problem (we are given an aafii  The ETC were randomly generated according to [19]. The
algorithm or program to parallelize, which can generate asachines and tasks are sorted. The low-indexed tasks have
much training data as required). This is another advantdgesmaller computation time than the higher indexed tasks. The
the classification approach over genetic programming, lwhitow-indexed machines are faster than the hight indexed ma-
randomly proposes algorithms in hope of meeting the objechines. This is necessary to train the classifiers with commo
tives. We use one mapper per task in the independent tésttex values for tasks and machines across ETC instances.
mapping problem. This is high number of mappers for a givefwo problem sizes are used in the simulations, 128 tasks x 4
problem instance, and scales linearly with the problem simeachines, and 512 tasks x 16 machines. The intention is to
(the number of tasks). Also, the classifiers work indepetigenobserve the behavior of the Savant algorithm when problem
of each other. size increases.

...3 ] output: solution

e This section presents the simulation setup and the results
8éserved.
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Fig. 2. Savant solution similarity fot28 x 4 problems (without the local Fig. 3. Savant solution similarity fo§12 x 16 problems (without the local
search reducer) search reducer)

The classifiers are multi-class SVM, implemented in libincreased number of machines (classes) to assign tasks to,
SVM [34]. We choose the recommended default parameteatthough we kept the same number of training instances., Also
The kernel chosen is RBF. Cross-validation is used to selélsis may point to a weakness of the common feature selection
the parameters. 600 ETC different instances are used in thée for all tasks.
training phase. 100 ETC different instances are used in the
testing phase. The ETC input is scaled. C. Savant Solution Quality

An important design decision of the Savant algorithm is |n this section, we evaluate the quality of the solutions
the selection of features to use for the SVMs, in training afdund by the Savant algorithm. Three comparisons are shown.
testing. Choosing the entire ETC input data for classifizati The leftmost boxplot (labeled “"savant vs minmin”) reports
provides poor results, in addition to longer training tifiée  the differences in solution quality (fitness, expressed n %
have chosen, after a short investigation, to use a simpée rupetween the Savant algorithm without the local search mduc
the features used for the classifier of a task are the valugsd the original Min-Min algorithm, for the same test ETC
of the ETC column of that task. We investigated the use @ifstances. The middle boxplot (labeled "savant+ls vs mirijni
neighboring columns, in addition to the task's ETC columishows the same comparison but with the local search reducer
but with no significant improvement. In scheduling termsyresented in Section 1II-C. The local search in the reducer
these values are the estimated completion times of the tagKy be responsible for these results. To measure this pessib
on all machines. Therefore to train or test the SVM for eadtfect, we add the rightmost boxplot (labeled "savant+ls vs

task, the features are first extracted from the ETC. Is”) to compare the Savant and local search reducer with the
When used, the local search reducer (Section 1lI-C) is rgame local search applied to random solutions.
for 10,000 iterations. Figure 4 shows boxplots results for the smaller instances.

We note that the Savant algorithm using only classifiers
produces very good results, 10% worse in median than Min-
In this section, we compare the solutions found by thdin. With the local search reducer, Savant results are very
Savant algorithm to the ones found by Min-Min. The reduceyood because the algorithm actually finds better solutibas t
simply assembles the results from the individual task diass Min-Min. The rightmost boxplot tells us that the classifieis
cation, the local search reducer is not used. This comparigzlay a role in the quality of the solutions found.
reflects the classifiers accuracy in predicting the Min-Min Figure 5 shows results for the larger instances. We see that
assignments. The accuracy measure is the count of cormée degraded accuracy observed in Figure 3 impacts theyjuali
classification over the 100 test instances, per task. of the solutions found. However, the Savant with the local
Figure 2 shows that the accuracy for the smaller tasks aseiarch reducer still produces good results. The rightmmst b
bigger tasks is low. The accuracy for the smaller tasks (ot shows that the Savant classifiers contribute signifigao
acceptable because they have little influence on the fithnelse quality of the solutions found. However, the poor result
function. The average accuracy is 82%, which is quite gooftom the random solutions with local search are due to the
Figure 3 shows that the accuracy of the classifiers is worsame number of iterations used, while the solution is bigger
than for the smaller problem. This is perhaps due to the both problem sizes, we notice that the local search reduce

B. Savant Solution Similarity
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speed, because of the on-going trends in computing arehitec
tures. However, the degraded accuracy and solution quality
when the problem size increases needs to be addressed. We
plan to use more training samples when the number of classes
increases, as is the case when problem size increases.

A more fundamental improvement is the feature selection
for the tasks SVMs. We used a simple rule, common to all
task SVMs (that nevertheless achieves good results): tselec
the task’'s ETC column. We are currently investigating the
use of different feature selection rules for each task, rmgive

o
S
o

T T T
savant vs minmin savant+ls vs minmin savant+ls vs Is

the tasks’ differences. One alternative is to use diffeEERC
columns for each task’s classifier. Another alternativeiage
elements of the ETC matrix, instead of columns. We plan to
automatically discover such rules, so as to meet our goal of

automatic parallelization.

Fig. 4. Savant solution quality for28 x 4 problems

A minor improvement is the re-design of the reducer step,

into a parallel version.
Other future work will investigate if the Savant algorithm i

. suitable for different, more elaborate and thus time-conisg,
o | algorithms for the same optimization problem. Also, we need
° to understand how this approach performs on different prob-
s ° lems altogether.
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