
Dynamic Mapping of Application Workflows in
Heterogeneous Computing Environments

Muhammad Qasim1, Touseef Iqbal1, Ehsan Ullah Munir1, Nikos Tziritas2, Samee U. Khan3, and Laurence T.Yang4,
1 COMSATS Institute of Information Technology, Pakistan

2 Chinese Academy of Sciences, China
3 North Dakota State University, USA
4 St.Francis Xavier University, Canada

qasim.std@ciitwah.edu.pk; tusifpk.std@ciitwah.edu.pk; ehsanmunir@comsats.edu.pk; nikolaos@siat.ac.cn;

samee.khan@ndsu.edu; ltyang@stfx.ca

Abstract—Performance of a Heterogeneous Computing Envi-
ronment (HCE) mainly depends on the efficiency of application
workflow scheduling algorithms. Achieving high efficiency of
application workflow scheduling algorithms in HCE is an NP-
Complete problem. A novel application workflow scheduling
algorithm called Heterogeneous Dynamic List Task Scheduling
(HDLTS) for HCE is proposed in this paper. The functionality
of HDLTS majorly relies on the following three pillars; first,
duplicate the entry task only if it helps to reduce the overall
application execution time; second, for mapping, consider only
those tasks that have all the necessary input conditions to start
the execution and find out the heterogeneity of their execution
time on the computational resources; third, select the task that
has higher execution time heterogeneity, and map it to a resource
that takes minimum time to execute the task. The HDLTS task
selection and mapping policies dynamically consider the resource
utilization and task assignment that makes it more efficient and
enables it to produce good quality schedules. The performance
of the HDLTS is evaluated against popular list scheduling
algorithms on randomly generated application workflows and real
world application workflows. Experimental results prove that the
HDLTS outperforms well-known list scheduling algorithms, such
as in terms of schedule length and efficiency.

Keywords—Heterogeneous computing, Workflow scheduling,
List scheduling, Makespan

I. INTRODUCTION

High-speed networks made it possible to interconnect the
diverse set of low powered computational resources, such as
Personal Computers, Tablets, and Cell Phones, to form a single
apparent resource that can provide powerful computational
capabilities. This powerful computational resource is termed
as the Heterogeneous Computing Environment (HCE) and
can be used to achieve High-Performance Computing (HPC)
[1]. With the evolution of big data and big data analytics,
more powerful computational resources are required to process
the large volumes of big data. The HCE is an economical
solution to achieve HPC for processing big data applications.
An application for HCE consists of the number of tasks that
can be executed in parallel on a set of computational resources.
An efficient task assignment and resource management policy
also called task scheduling is required to exploit the advantage
of parallel execution of tasks among the set of heterogeneous
computing resources.

Task scheduling is the process of assigning the applica-
tion tasks to available computational resources such that it
minimizes the communication overhead incurred due to data
transfer among the execution of the tasks on different com-
putational resources and speed up task execution by mapping
tasks to a computational resource that complete task execution
in minimum time. Task scheduling takes into account the
heterogeneity of computational resources and communication
overhead between computational resources. An efficient task
scheduling policy can increase the performance of a HCE.
The aim of task scheduling policy is to reduce the overall
execution time of the application also called makespan of
the application. Applications for a heterogeneous computing
environment are modeled as Application Workflow represented
by Directed Acyclic Graph (DAG). Application workflows
are classified into two categories, namely Static application
workflows and Dynamic application workflows [2], [3]. In a
static application workflow model, nodes represent the tasks of
application and edges represent the dependency of the tasks.
Static application workflow scheduling is an NP-Complete
problem [4]–[7].

Heuristic methods are well known for solving the ap-
plication workflow scheduling problem in polynomial time.
These methods generate near optimal schedules in polyno-
mial time. To solve the static application workflow schedul-
ing problem, many heuristic methods exist in the literature.
Broadly, these methods are classified into four categories,
namely cluster-based scheduling heuristics, list-based schedul-
ing heuristics, task-duplication based scheduling heuristics,
and genetic-based scheduling heuristics. List-based scheduling
heuristics are more popular because of their low complexity
and higher efficiency. Popular list-based scheduling heuristics
are Heterogeneous Earliest Finish Time (HEFT) [8], Per-
formance Effective Task Scheduling (PETS) [9], Critical-
Path on Processor (CPOP) [8], Predict Earliest Finish Time
(PEFT) [10], and Standard Deviation Based Task Scheduling
(SDBATS) [11]. List-based scheduling usually consists of
two phases. In the first phase, a ready list of precedence-
constrained tasks is generated using some pre-defined criteria.
The second phase assigns the tasks based on their pre-defined
priority order to suitable machines. The complexity of list-
based scheduling heuristics is least than any other scheduling
heuristic methods. Genetic-based scheduling heuristics [12]–

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-0-7695-6149-3/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.129

462

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-3408-0/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.129

462

[17] go through intensive search and produce a good quality
schedule, but their time complexity is higher. Clustering-based
scheduling heuristics [2], [18]–[20] are usually used for the
unbounded number of computational resources. However, their
schedule generation process is more complex to make them
impractical to use. The Task-duplication based scheduling
heuristics [13], [21], [22] have the highest time complexity
hence, they are inefficient to deploy.

The major contribution of the research presented in this
paper is a novel Heterogeneous Dynamic List Task Scheduling
Heuristic (HDLTS) to solve the static application workflow
scheduling problem in a HCE. We consider that all computing
resources in the system are fully connected to each other and
the number of computing resources are fixed for any given
evaluation. Central Processing Unit (CPU) and computing
resource are the alternative terms that we use to represent
the set of computing resources in HCE. The motivation
behind this work is to select only those tasks for mapping to
computing resources in HCE that are ready to be executed
at that time instance. This approach is more practical and
generates a good quality schedule with low time complexity,
therefore HDLTS is a low-cost solution. The priority criteria
for the execution of any task from the set of tasks is the
Penalty Value (PV) of the task (defined in Section IV).
The tasks with the highest PV will be executed first. We
make our approach realistic and practical by considering the
finish time of each task on a set of computational resources
during each assignment. Therefore, our algorithm can be used
for both types of static application workflows and dynamic
application workflows. However, in this work we consider only
the static application workflows. We build a synthetic task
graph generator as part of this work to compare HDLTS
with well-known list scheduling algorithms in literature, such
as Heterogeneous Earliest Finish Time (HEFT), Performance
Effective Task Scheduling (PETS), Critical-Path on Processor
(CPOP), Predict Earliest Finish Time (PEFT), and Standard
Deviation Based Task Scheduling (SDBATS).

II. RELATED WORK

A plethora of task scheduling techniques exists to solve
the application workflow scheduling problem in a HCE.
These algorithms are broadly categorized into two main cate-
gories, namely dynamic application workflow scheduling algo-
rithms and static application workflow scheduling algorithms.
Dynamic application workflow scheduling algorithms make
scheduling decisions at run-time. However, in static applica-
tion workflow scheduling algorithms, scheduling decisions are
taken before deploying the application based on prior knowl-
edge of task dependencies and resource capacities. This en-
ables task scheduling at compile time. Static application work-
flow scheduling algorithms are further segregated into guided
arbitrary-search based and the heuristic based group of algo-
rithms. List-based scheduling heuristics, task-duplication based
scheduling heuristics, and cluster-based scheduling heuristics
are sub-categories of heuristic-based scheduling algorithms.
An overview of heuristics based scheduling algorithms is
discussed in the following section.

A. List Scheduling Heuristics

List scheduling heuristics work in two phases. In the first
phase also called the task prioritization phase, a given set
of precedence-constrained tasks are prioritized using some
predefined criteria of prioritization. In the second phase, tasks
are selected based on their pre-defined priority order. The
execution time of the selected task is computed from the set
of computational resources. The selected task is assigned to
the machine that completes its execution in minimum time.
The popular list based heuristics are HEFT , PETS, CPOP ,
PEFT , and SDBATS.

B. Task Duplication Based Heuristics

Scheduling a task from a given application workflow
on all available processors is called task duplication. Task
duplication may reduce the overall makespan, but with the
cost of complexity and cost of higher energy consumption.
The Duplication Based Heterogeneous Earliest Finish Time
(DHEFT) introduces the concept of duplication in HEFT
algorithm that reduces the makespan significantly [23].

C. Clustering Heuristics

Clustering algorithms work by mapping a given application
workflow to an unbounded number of clusters [18]. Iterative
assignment of the task to the clusters is performed until the
number of available computational resources become equal
to the number of clusters. In each iteration, a random task
is selected for mapping to a cluster and the clusters formed
iteratively merge to form more optimum clusters. Tasks in the
same cluster are executed on the same computational resource.
Additionally, cluster mapping algorithm or the clustering al-
gorithm is required in cluster-based heuristics to schedule
the tasks within one cluster. Few of the main clustering
algorithms for application workflows are Linear Clustering
Method (LCM), Dominant Sequence Clustering (DSC), and
Clustering and Scheduling System (CASS) [2], [18]–[20].

D. Selected List Scheduling Heuristics

This section briefly describes a few of the most cited lists
based task scheduling heuristics which are HEFT , PETS,
CPOP , PEFT , and SDBATS.

1) Heterogeneous Earliest Finish Time: The HEFT al-
gorithm computes upward rank of each task in application
workflow using their mean computation time across a diverse
set of computational resources. After that, tasks are sorted in
the descending order of their rank values such that the task
with a higher rank value will have a highest priority. Prioritized
tasks are then mapped to the available computational resources
using their Earliest Finish Time (EFT) value. A processor that
gives the minimum EFT result will be selected for the task
execution. Insertion based policy is adopted to fully utilize the
idle time slots if exists. The HEFT has the time complexity
of O(V 2 × P) for the V number of tasks in the application
and P number of CPUs in the HCE.

463463

2) Performance Effective Task Scheduling: The PETS
algorithm, models the communication cost between tasks as
Data Transfer Cost (DTC) and Data Receiving Cost (DRC).
Priorities of the tasks are calculated in the task prioritization
phase on the basis of their ranks that are calculated by adding
their DTC, DRC, and Average Computation Cost (ACC).
The CPU assignment phase maps the prioritized tasks on
available CPUs based on their minimum EFT value. The
PETS also take in account the insertion base policy to address
the possibility of inserting a process in the free time slot.
The O(V + E)(P + logV) is the time complexity of PETS
algorithm for V number of tasks in the application, E number
of edges between tasks in application and P number of CPUs
in a HCE.

3) Predicted Earliest Finish Time: The basic idea behind
the PEFT algorithm is the formulation of the Optimistic Cost
Table (OCT) on the basis of which the task prioritization
and processor selection are performed. Each element in the
OCT table annotates maximum cost for a task to the exit
task through its immediate child tasks. The time complexity
of PEFT is O(V 2×P) for V number of tasks of application
and P number of CPUs in a HCE.

4) Standard Deviation Based Task Scheduling Heuristic:
The SDBATS algorithm uses standard deviation of the execu-
tion time of a given set of tasks on the set of the computational
resources as the key value for calculating the upward rank of
tasks. The value of upward rank determines the priority of
tasks and their execution order. The SDBATS uses entry
task duplication to enhance the efficiency of the algorithm.
The time complexity of SDBATS is also O(V 2 × P) for V
number of tasks in the application and P number of machines
in a HCE.

III. PROBLEM FORMULATION

In this paper, we adopt a static application workflow
model for the task scheduling problem. A static application
workflow model is represented by a direct acyclic graph (DAG)
G = (V,E), where V is the set of tasks V = {v1, v2,, vn}
that shows n number of tasks of application workflow and
E is the set of edges E = {e1, e2,, em} that represents
the dependency constraint between the tasks of an application
workflow. Moreover, the tasks in the application workflow are
distributed into the k levels in DAG. Tasks on the same level
are the independent tasks and can be executed in parallel.
An example static application workflow model is shown in
the Fig. 1. The task with no parent task is representing the
entry task (Ventry) of the application workflow and the task
with no child task is representing the exit task (Vexit) of
the application workflow. A task graph may have more than
one entry and exit tasks. We use a pseudo task to model the
multiple entry and exit task graphs into a single entry and
exit task graphs. This pseudo task has zero computation cost
and is connected with its child tasks with zero communication
cost. An HCE consists of the M = {m1,m2,,mp} set
of p heterogeneous computational resources. We also assume
that all the computational resources are fully connected and
there is no network contention between them. Moreover, the
assignment of tasks to the computational resources is non-
preemptive. The common attributes of the task scheduling
problem are discussed in the following section:

A. Common Attributes of Task Scheduling Problem

Definition 1: The execution time of a task on a CPU is
calculated by dividing the number of instructions in the task
by the clock frequency (Hz) of the CPU. The W is an n× p
matrix that represents the computation time of the task viεV
on each CPU mpεM . The mean execution time of a task viεV
on set of p computational resources M = {m1,m2,,mp}
is calculated using the following relationship:

W (vi) =

p∑

j=1

W (vi,mj)/p. (1)

Definition 2: The communication time is the overhead that
generates due to the data transfer between the different compu-
tational resources. Let the volume of the data transfer between
the two tasks vi and vj is Data(vi, vj). The Bandwidth of
the channel that connects the two computational resources mi

and mj is B(mi,mj) that is representing the maximum data
transfer rate of the channel. The communication cost is the
amount of time taken to send the Data(vi, vj) on the channel
B(mi,mj). A communication cost matrix C is an n×n matrix
that shows the task dependencies and the communication cost
between the tasks and is expressed as:

Comm Cost(vi, vj) = Data(vi, vj)/B(mi,mj). (2)

If two tasks vi and vj are computed on the same computing
resource then the communication cost will be considered zero.

Definition 3: The time in which a CPU finishes the
execution of a task and becomes ready to execute a new task
is called the available time of that CPU. If a task viεV is
assigned to a CPU mpεM , then the available time of mp will
be the finish time of vi on mp. The available time of a CPU
can be calculated as:

Avail(mp) = Avail(mp) +W (vi,mp). (3)

Definition 4: The finish time, also called the Actual Finish
Time (AFT) of a task viεV , is the time taken by a CPU
to successfully complete the task. It is calculated using the
following relationship:

AFT (Vi) = Finish(Vi). (4)

Definition 5: The ready time of a task viεV on a CPU
mpεM , is the time when the input conditions of the task have
met and the task is ready to be assigned to a CPU for the
execution. A task becomes ready only when its parent tasks
have finished their execution and the results from all the parent
tasks have become available as the input of the task. The ready
time of the entry task ventry is always assumed to be zero. If
a task has a single parent and both the parent and child task
assigned to the same computational resource then the ready
time of the child task will be the finish time of the parent
task. Following relationship represents the ready time:

(5)Ready(vi,mp) = AFT (vj) + Comm cost(vi, vj).

Definition 6: The earliest start time (EST) of a task vi on
the CPU mp depends on the ready time of the task vi on the

464464

�� �� ��

�� �� �
	
���

�� �� ��

�� � ��
	
���

�� �� ��

�� �� ��
	
���

�� �� ��

�� �� ��
	
���

�� �� ��

�� �� ��
	
���

�� �� ��

�� �� �
	
���

�� �� ��

� �� ��
	
���

�� �� ��

�� � ��
	
����

�� �� ��

� �� ��
	
���

�� �� ��

�� �� ��
	
���

��� ������

��
�� �� �� �� ����

�� �� ��

Fig. 1. A sample application workflow of ten processes.

CPU mp and the available time of the CPU mp, whichever is
later. The EST of a task is calculated as:

(6)EST (vi,mp) = max{Ready(vi,mp), Avail(mp)}.

Definition 7: The earliest finish time (EFT) of a task viεV
on the computing resource mp is the least amount of time a
computing resource mpεM takes to process vi. The EFT of a
task is calculated as:

EFT (vi,mp) = EST (vi,mp) +W (vi,mp). (7)

Definition 8: The penalty value (PV) of a task viεV is the
standard deviation σ of the EFT values of the task vi on a set
of the computing resources M . It represents the heterogeneity
of the task vi, which is executed on the different computational
resources in a HCE. A task with a higher PV value may
increase the overall finish time of an application significantly
if not handled on the priority. The PV of a task is calculated
as:

PVvi = σ{EFT (vi,mp)}. (8)

Definition 9: The makespan of an application workflow is
the AFT of the vexit of the application. It is the maximum
time taken to complete an application workflow.

Makespan = AFT (vexit). (9)

IV. HETEROGENEOUS DYNAMIC LIST TASK SCHEDULING

HEURISTICS (HDLTS)

List scheduling algorithms usually consist of two phases,
namely task prioritization phase, and CPU assignment phase.
The task duplication and the insertion base assignment are the
two optimization techniques to reduce the makespan in list
scheduling. Our proposed algorithm HDLTS consists of three
phases, namely Effective Entry Task Duplication phase, Task
Prioritization phase, and CPU Selection phase.

Effective Entry Task Duplication Phase: This phase is
the optimization phase of the HDLTS. To avoid the overhead
incurred due to the task duplication, we propose an effective
technique to duplicate only the entry task of an application.
The proposed Algorithm 1 duplicates the entry task only if

Algorithm 1: Effective Entry Task Duplication

Input: Application workflow graph G = (V,E)
Output: Entry Task Duplication(true|false)
begin

for k in CPUs do
if EST (Vi, k) <
AFT (Vi) + Comm Cost(Vi, Vj) then

Duplicate the entry task on the CPU k

it results in reducing the overall makespan. Our proposed
technique checks the actual finish time (AFT) and the com-
munication time (Comm Cost) of the entry task to all of
its child tasks on a particular CPU. If sum of the AFT and
Comm Cost is greater than the earliest start time (EST) of
the entry task on that particular CPU, then the entry task will
be duplicated only on that particular CPU. The Algorithm 1
ensures that there is no unnecessary duplication of the entry
task on all the CPUs.

Task Prioritization Phase: The task prioritization phase
in the list scheduling generates a static list of the ready tasks
using some prioritization criteria and assign the priorities of
the tasks to schedule them in a specific order. Once this static
ready list is computed, then the tasks are mapped according
to their priorities in the task assignment phase. The approach
is simple, but it does not allow the scheduler to take into
account the status of the computing resources during the
task assignment phase. In an application workflow, the term
independent task refers to a task whom parent tasks have
finished their execution. Our task prioritization phase generates
a dynamic ready list of the independent tasks only. We named
this dynamic ready list as the Independent Task Queue (ITQ).
The standard deviation of the execution time of a task on the
set of CPUs represents the heterogeneity of the task execution
in a HCE. The prioritization criterion of the HDLTS is the
penalty value (PV) of the tasks in the ITQ. The PV of the
task represents its heterogeneity and is computed using the
Equation 8. Our algorithm prioritizes the tasks in the ITQ
and updates the ITQ after mapping the task to a computing
resource. An independent task is allowed to run on any of the
available CPUs in a HCE. The task with a higher PV will
have a highest priority of the execution and is mapped to a
CPU according to the Algorithm 2. Once a task is mapped to
a CPU it will be removed from the ITQ. A new independent
task if produced, will be added to the ITQ and the priorities
of the tasks will be re-calculated. This process continues until
all the tasks of the application are successfully prioritized as
described in the Algorithm 2.

CPU Selection Phase: In this phase, the HDLTS maps
the highest priority task in the ITQ to the computing resource
that can complete its execution at the earliest among all the
CPUs in a HCE. The HDLTS computes the earliest finish
time (EFT) of a selected task for all the CPUs using the
Equation (7). The HDLTS selects the CPU that gives the
minimum EFT value and assigns the task to selected CPU.
The selected task is then removed from the ITQ. This process
continues until all the tasks of an application are mapped.

To illustrate the working of the HDLTS we use a task

465465

Algorithm 2: Heterogeneous Dynamic List Task Scheduling (HDLTS)

Input: Scientific application workflow graph G = (V,E,W,C)
Output: Makespan of the application workflow.
begin

for all tasks in the application workflow do
Add independent tasks into the independent task queue (ITQ)
while ITQ is not empty do

for all tasks in the ITQ do
Duplicate the entry task using the Algorithm 1.
Compute the EST and EFT values of each independent task using the Eq. (6) and Eq. (7).
Assign priorities based on heterogeneity of the tasks using the Eq. (8).
Remove the highest priority task from the ITQ and assign it to its ideal CPU define in the Section 4.
Update the ITQ.

graph shown in the Fig. 1. Each box represents a task and
P1, P2, and P3 represent three CPUs in a HCE. The value
in the each column of the box represents the execution time
of the task on that CPU. The task graph shown in the Fig.
1, has 10 tasks and 3 heterogeneous computing resources.
A matrix W is a (10 × 3) matrix represents the execution
time of each task on the corresponding CPU. The edges in the
task graph represent the dependency constraints and show the
communication cost incurred due to the data transfer between
two tasks. Therefore, the input of HDLTS is an application
task graph G = (V,E,W,C) and N computing resources in
a HCE. For the above, V represents the number of tasks in
the application, E is the set of edges between tasks, W is an
(V ×N) matrix showing the execution time of V tasks for N
computing resources, and C is an (V ×V) matrix showing the
communication cost between tasks and their dependencies. The
output of the Algorithm 2 is the makespan of the application.

Initially, Ventry is the only independent task and will be
added to ITQ. The execution cost of the Ventry on the CPUs
P1, P2, and P3 is 14, 16, and 9, respectively. The penalty
value of the Ventry is 7.0 and is calculated using the Equation
(8). Since P3 takes the minimum execution time, therefore,
the Ventry will be assigned to P3. The value of the AFT
of the Ventry will be updated to 9. Now the tasks T2, T3,
T4, T5, and T6 become the independent tasks and will be
added to ITQ. The EFT values for all the independent tasks
T2, T3, T4, T5, and T6 are calculated using the Equation (7)
that are [27, 35, 27], [25, 29, 28], [27, 24, 26], [26, 29, 19], and
[27, 32, 18] respectively. The penalty values of the tasks T2, T3,
T4, T5, and T6 are calculated using the Equation (8), which
are 4.6, 2.0, 1.5, 5.1, and 7.0, respectively. The ITQ is then
sorted in the descending order of their penalty values and T6

is removed from the ITQ because of its highest PV . The
Algorithm 1 checks for the possible entry task duplication of
T6. The AFT value of T6 is calculated using the Equation (3)
and T6 is assigned to P3. This process is repeated and on every
iteration, the tasks which become the independent task will be
added to the ITQ and the task with the highest PV will be
removed from ITQ and mapped to the suitable CPU. Once
all the tasks have finished their execution, the makespan of
the task graph is obtained using the Equation (9). The Table I
shows the scheduled of an application task graph shown in the
Fig. 1 produced by the HDLTS algorithm. The makespan of
the HDLTS for the given application task graph is 73, which

TABLE I. HDLTS SCHEDULE PRODUCED AT EACH STEP

Step
Ready Penalty Selected EFT
Task Values Task P1 P2 P3

1 T1 7.0 T1 14 16 9
2 T2, T3, T4, T5,T6 4.6, 2.0, 1.5, 5.1, 7.0 T6 27 32 18
3 T2, T3, T4, T5 4.9, 6.1, 5.6, 1.5 T3 25 29 37

4 T2, T4, T5, T7 1.5, 7.3, 4.9, 16.8 T7 32 63 59

5 T2, T4, T5 5.5, 10.5, 8.9 T4 45 24 35

6 T2, T5 4.7, 8.0 T5 44 37 28
7 T2 1.5 T2 45 43 46

8 T8 , T9 11.0, 13.3 T9 77 55 79

9 T8 5.5 T8 67 66 76

10 T10 13.2 T10 98 73 93

is least among all the other list scheduling algorithms described
in the Section II. While, the makespan of the HEFT , PETS,
PEFT , and SDBATS, are 80, 77, 86, and 74, respectively.

In the HDLTS, we update the priority of the tasks in
the ITQ on each iteration and takes into account the CPUs
availability before assignment of the task. This approach
is beneficial if any of the CPU in the underlying HCE is
malfunctioning, the HDLTS will still be able to efficiently
assign the tasks to the remaining available CPUs. Therefore,
the HDLTS has the higher efficiency and load balancing.
The complexity of the HDLTS for mapping of v tasks that
are distributed over the k levels of an application workflow
is O((v2) × (v/k) × p)), where p represents the number of
computing resources available in a HCE.

V. EVALUATION

This section presents the evaluation of the HDLTS,
HEFT , PETS, PEFT , and SDBATS algorithms. For
the evaluation, we develop a synthetic DAG generator with
properties as discussed in the [8]. We also use the real world
example scenarios like Fast Fourier Transform (FFT), Molec-
ular Dynamics (MD), and Montage application workflows
for evaluation of the HDLTS and selected list scheduling
algorithms. Our simulation testbed includes a single PC with
Intel Quad-Core Xeon CPU running at 2.93 GHz and with
12GB memory.

A. Comparison Metrics

The comparison metrics used in the evaluation are the
scheduling length ratio (SLR), speedup, and efficiency.

466466

1) Scheduling Length Ratio: The makespan is the overall
execution time of the application as defined in the Equation
(3). However, the makespan does not represent how much
the generated makespan is better than the minimum possible
makespan of the application. The scheduling length ratio
(SLR) is a common metric that represents the ratio between
the makespan of the application to the minimum possible
makespan of the application. The SLR is defined as follows:

SLR =
makespan∑

nεCPMIN
minPjε(W(i,j))

. (10)

where CPmin represents the critical path of an application
workflow. The denominator value shows the lower bound of
the makespan and it is equal to sum of the minimum execution
time of the critical path tasks. A Higher value of SLR means
the poor performance of the algorithm.

2) Speedup: This metric numerically measures in the unit
time that how quickly an application workflow execution is
completed by using the parallel execution. It is the mathe-
matically equivalent to the ratio of the sequential computation
time on single CPU to the parallel execution time on the set
of CPUs.

Speedup =
min

∑
PjεM

W (vi, pj)

makespan
. (11)

The numerator value shows the minimum value of the sequen-
tial execution time of all the tasks on a set of CPUs. Speedup
value shows the improvement in the overall execution time of
the application due to the parallel execution of tasks.

3) Efficiency: The term efficiency describes how much for
a certain number of CPUs a system will Speedup. For a given
application workflow, increase in the total number of CPUs in
a HCE increase the system efficiency to a certain point after
that point increase in the number of CPUs may decrease the
system performance or efficiency. The efficiency of a system
can be calculated using the following relationship:

Efficiency =
Speedup

NumberofCPUs
. (12)

B. Random Task Graph Generator

We develop a synthetic task graph generator for the
evaluation of the HEFT , PETS, PEFT , SDBATS, and
HDLTS. Our task graph generator uses the same parameters
for the generation of random task graphs as described in the
[8], [11], [24] for a fair evaluation. However, our task graph
generator has the ability to generate the multiple entry and exit
tasks graphs. In our evaluation, we used a pseudo task that
models the multiple entry and exit task graphs into a single
entry and exit task graphs. Our task graph generator is more
scalable and effectively generates a range of task graphs that
contain tasks as low as few tasks to tens of thousands of tasks.
The parameters used in our task graph generator controls the
different characteristics of the generated task graphs and are
defined in the following section:

1) V : This parameter defines the total number of tasks in
the generated task graph.

TABLE II. PARAMETERS USED TO GENERATE RANDOM TASK GRAPHS

Parameters Values

Tasks (V) 100, 200, 300, 400, 500, 1000, 5000, 10000

Alpha (α) 0.5, 1.0, 1.5, 2.0, 2.5

Density 1, 2, 3, 4, 5

CCR 1.0, 2.0, 3.0, 4.0, 5.0

Number of CPUs 2, 4, 6, 8, 10

Wdag 50, 60, 70, 80, 90, 100

Beta (β) 0.4, 0.8, 1.2, 1.6, 2.0

2) α: The shape parameter (α) is also called the fitness of a
task graph. It determines the parallelism between the different
tasks in an application workflow. The height of application
workflow is equal to the

√
v/α, a lower value of α generates

the taller and thin task graphs with low parallelism. While
the width of the task graph is equal to

√
v × α. Therefore, a

higher value of α represents the fatty task graph with a high
parallelism between tasks.

3) Density: This parameter defines the outdegree of a task
and represents the dependencies among the tasks. A higher
value of the density generates the task graphs with more edges
hence more dependency.

4) Communication to Computation Ratio (CCR): This
parameter controls the type of task graph generated. A higher
value of CCR represents the data intensive task graphs and a
low value of CCR represents the computation intensive task
graphs.

5) Number of CPUs: This parameter defines the number
of computing resources used for evaluation of the generated
task graphs.

6) Mean Computation Time of DAG (Wdag): This param-
eter controls the overall computational time of all the tasks in
the task graphs. The value of Wdag is distributed uniformly
for all the tasks in the task graphs.

7) β: The value of the β controls the heterogeneity factor
of the task execution among the set of CPUs. A Higher value
of the β shows a higher variation in task execution time among
CPUs.

The average computation time of each task vi is selected
randomly over the uniform distribution of range [0, 2×Wdag].
The computation time of each task vi for the set of CPUs is
selected using the following relationship:

{wi × (1− β/2)} <= w(i, j) <= {wi × (1 + β/2)}. (13)

The communication cost of the edges is calculated by using
the following relationship:

Comm Cost(vi, vj) = wi × CCR. (14)

The combination of the parameters used in our simulation
study to generate random application task graphs are given
in the Table. II

The combination of the parameters shown in the Table. II
can generate 125K unique application workflow graphs. We
run the simulation for each combination of the parameters for
1000 time to get an average value of the results of performance
metrics define in the Section V-A. The results of our evaluation
show that the HDLTS outperforms the other list scheduling
heuristics used in the evaluation.

467467

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5

Av
er

ag
e

SL
R

CCR

HEFT PETS PEFT SDBATS HDLTS

Fig. 2. Average SLR of random application workflow Vs CCR.

 0

 1

 2

 3

 4

 5

 6

 7

100 200 300 400 500

Av
er

ag
e

SL
R

Task size

HEFT PETS PEFT SDBATS HDLTS

Fig. 3. Average SLR of random application workflow Vs Task size.

The SLR obtained as a function of the different values
of CCR and task size is shown in the Fig. 2 and Fig. 3,
respectively. The results show that for the lower values of
CCR, the SLR of the HDLTS is equal to the SLR of
HEFT and SDBATS, but the increasing value of CCR
shows that for communication intensive task graphs, the
HDLTS outperforms the other list scheduling algorithms. The
Fig. 3 shows that the HDLTS performs better for application
workflows that have the higher number of tasks. The evaluation
of efficiency as a function of the number of CPUs for synthetic
task graphs is shown in the Fig. 4. The results show that for
a less number of computing resources, the efficiency of the
HDLTS is higher significantly, but with an increasing number
of CPUs, HEFT and SDBATS outperform the HDLTS.
A decrease in the efficiency of the HDLTS for the higher
number of CPUs is because the HDLTS takes into account
the heterogeneity of the independent tasks only and does not
take a look at the overall structure of the application and the
impact of a CPU assignment for a task to its child tasks.

C. Real World Applications Workflows

In addition to the Random Task Graph Generator, we
evaluate the HDLTS for the real world application workflows
such as, Fast Fourier Transform application workflow [8],
Montage application workflow [25], and Molecular Dynamic
application workflow [8].

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 4 6 8 10

E
ci

en
cy

Number of CPUs

HEFT PETS PEFT SDBATS HDLTS

Fig. 4. Efficiency of random application workflow Vs Number of CPU.

��

��� ���

�� ��

�� ��

��

��� ���

��� ���

�� �	

��

Fig. 5. An FFT application workflow of four input points.

1) Fast Fourier Transform application workflow: The
FFT based application workflows are structured and designed
on the basis of recursive and butterfly algorithms. A FFT
application workflow for 4 data points based structure is shown
in the Fig. 5. The total number of tasks in the recursive
part of the application are equal to (2 × (m − 1) + 1), and
the total number of tasks in butterfly operation are equal to
(m × log2 m), where the size of a matrix is denoted by m.
We can change the value of m to the power of 2, to obtain
the different number of tasks in an application.

To analyze HDLTS for different types of the FFT based
application workflow models, we change the value of m from
4 to 32, which generates the FFT application workflows
that contain the task ranges from 15 tasks to the 223 tasks,
respectively. The evaluation of the SLR as a function of
the different values of input points for the FFT application
workflows is shown in the Fig. 6. The average SLR as a
function of the CCR values is shown in the Fig. 7. The
results show that the HDLTS outperforms with the lowest
SLR for the various input values of the CCR. The evaluation
of efficiency of the HDLTS and selected list scheduling
algorithms, we set the size of the input points to 16, and
perform the simulation for the different number of CPUs.
The results are shown in the Fig. 8. The results show that,
the HDLTS outperforms all the other selected list scheduling
algorithms in terms of efficiency.

468468

 0

 1

 2

 3

 4

 5

 6

2 4 8 16 32

Av
er

ag
e

SL
R

Input Points

HEFT PETS PEFT SDBATS HDLTS

Fig. 6. Average SLR of FFT application workflow Vs Input points.

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5

Av
er

ag
e

SL
R

CCR

HEFT PETS PEFT SDBATS HDLTS

Fig. 7. Average SLR of FFT application workflow Vs CCR.

2) Montage application workflow: The Montage [26] is
another real world application based on a specific type of the
application workflow structure. It is used in space industry
for the mosaics of an astronomical image of the sky or any
galaxy. A typical model of the 20 nodes montage application is
shown in the Fig. 9. The structure of the montage application
workflows are well defined so we can change the heterogeneity
factor of computation time of each task in the application,
the CCR value of the application and the number of CPUs
for the evaluation of the HDLTS. In our evaluation, we use
the montage workflows with fixed structure, that contains 50
and 100 nodes, and varies the different CCR values in the
range between 1 to 5, while keeping the number of CPUs to
5, and obtained the mean SLR value of 1000 runs for each
value of the CCR. We run the simulation, while keeping the
CCR at 3 and the varying number of CPUs from 2 to 10 and
get the efficiency of the HDLTS and other algorithms. The
comparison results of both SLR and efficiency are shown in
the Fig. 10 and Fig. 11, respectively. The results for the average
SLR against the CCR values, and the efficiency against
the number of CPUs show that the HDLTS outperforms in
the both cases. This shows the HDLTS is more efficient for
scheduling the scientific application workflows, such as the
Montage.

3) Molecular Dynamics Code: An application workflow
model of a modified molecular dynamic code [27] is shown
in the Fig. 12. The structure of the molecular dynamics code

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 4 6 8 10

E
ci

en
cy

Number of CPUs

HEFT PETS PEFT SDBATS HDLTS

Fig. 8. Efficiency of FFT application workflow Vs Number of CPU.

�� �� �� ��

�� �� �� �� �����

���

���

��� ��� ��� ���

���

���

���

���

�	
	�������	
���

�	
	�������	
���

��������

�	
	��	�
�
������

Fig. 9. A sample Montage workflow.

is fixed, therefore our evaluation is based on varying values
of the CCR, β, and the number of computing resources. The
Fig. 13 represents the performance of the HDLTS for the
average SLR as a function of different values of the CCR.
The results show the HDLTS outperforms other algorithms
significantly. We also evaluate the efficiency of the HDLTS
for a different number of CPUs while keeping the CCR value
at 3. We take different values of the CPUs from the range 2
to 10 and measure the efficiency of the HDLTS. The results
are shown in the Fig. 14. The HDLTS performs better in all
scenarios with a different number of CPUs. This represents that
for the real world application based on the Molecular Dynamic,

469469

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4 5

Av
er

ag
e

SL
R

CCR

HEFT PETS PEFT SDBATS HDLTS

Fig. 10. Average SLR of Montage application workflow Vs CCR.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

2 4 6 8 10

E
ci

en
cy

Number of CPUs

HEFT PETS PEFT SDBATS HDLTS

Fig. 11. Efficiency of Montage application workflow Vs Number of CPU.

our algorithm outperforms the HEFT , PETS, PEFT , and
SDBATS. Moreover, the HDLTS is more efficient and
effective algorithm for these type of applications.

VI. CONCLUSION

In this paper, we proposed a novel task scheduling al-
gorithm called the HDLTS. This algorithm produces better
schedules as compared to the schedules generated by the
popular list scheduling algorithms HEFT , PETS, PEFT ,
and SDBATS. The algorithm is based on the dynamic list
of ready tasks instead of the static list. This dynamic ready
list contains only the independent tasks at a given instance.
We called this dynamic list as independent task queue (ITQ).
Tasks in the ITQ are prioritized using the heterogeneity of
their execution times on the set of computing resources. The
assignment of a computing resource to a task is based on
the EFT value of the highest priority task in the ITQ. The
HDLTS also takes into account the resources status before
prioritizing the tasks for mapping. Therefore, the HDLTS
is efficient in load balancing also. Our approach is straight-
forward and can be applied for both static and dynamic
application workflows. The complexity of the HDLTS for
mapping of v tasks that are distributed over the k levels of
an application workflow is O((v2) × (v/k) × p)), where p
represents the number of computing resources available in a
HCE.

The HDLTS mainly focuses on reducing the scheduling

�

�� ����

���������������������

��������	��
������

������������

������	�
������

���

��� ��� ��� ���
���

���

��
������

��	 ���

���

Fig. 12. A sample Molecular Dynamic workflow.

 0

 1

 2

 3

 4

 5

1 2 3 4 5

Av
er

ag
e

SL
R

CCR

HEFT PETS PEFT SDBATS HDLTS

Fig. 13. Average SLR of Molecular Dynamic application workflow Vs CCR.

length and efficient utilization of resources. The optimization
criterion used in the HDLTS is the duplication of the
entry task. We proposed an efficient solution to duplicate
the entry task only if it is helpful to reduce the makespan
of an application. The generation of the static list of all
the tasks of an application in advance restricts the scheduler
to make the scheduling decisions at runtime. The HDLTS
allows the scheduler to assign the priorities to the tasks at
runtime, therefore, the HDLTS can increase the efficiency of
scheduling for uncertain conditions in a HCE.

The experimental evaluation of the HDLTS is based on
two types of application workflows, namely random appli-
cation workflows and real world application workflows. The
random application workflows are produced using a synthetic
task graph generator. We develop this synthetic task graph
generator as part of this research and for the evaluation pur-
pose, we produced the 125K unique random task graphs. The
real world application workflows used in evaluation are Fast
Fourier Transform application workflow, Montage application
workflow and Molecular Dynamics application workflow. The
evaluation is performed to obtain the results of SLR and
efficiency of the HDLTS, HEFT , PETS, PEFT , and
SDBATS. The results represent the HDLTS outperforms
rest of the algorithms in terms of both performance metrics.

470470

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 6 8 10

E
ci

en
cy

Number of CPUs

HEFT PETS PEFT SDBATS HDLTS

Fig. 14. Efficiency of Molecular Dynamic application workflow Vs Number
of CPU.

In future, we will use the HDLTS in an uncertain hetero-
geneous computing environment and network conditions, to
test the efficiency of the HDLTS. We will also propose the
application of the HDLTS in dynamic application workflow
and test its performance.

VII. ACKNOWLEDGMENTS

Samee U. Khan's work was supported by (while serving at)
the National Science Foundation. Any opinion, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation computer
systems, vol. 25, no. 6, pp. 599–616, 2009.

[2] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: a survey,”
The Journal of Supercomputing, vol. 71, no. 9, pp. 3373–3418, 2015.

[3] A. Masood, E. U. Munir, M. M. Rafique, and S. U. Khan, “Hets:
Heterogeneous edge and task scheduling algorithm for heterogeneous
computing systems,” in High Performance Computing and Communica-
tions (HPCC), 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security (CSS), 2015 IEEE 12th International Conferen on
Embedded Software and Systems (ICESS), 2015 IEEE 17th Interna-
tional Conference on. IEEE, 2015, pp. 1865–1870.

[4] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang, and J. Wang, “Cost-
efficient task scheduling for executing large programs in the cloud,”
Parallel Computing, vol. 39, no. 4, pp. 177–188, 2013.

[5] Q.-K. Pan and R. Ruiz, “An effective iterated greedy algorithm for
the mixed no-idle permutation flowshop scheduling problem,” Omega,
vol. 44, pp. 41–50, 2014.

[6] O. Sinnen, “Reducing the solution space of optimal task scheduling,”
Computers & Operations Research, vol. 43, pp. 201–214, 2014.

[7] T. K. Ghosh, S. Das, S. Barman, and R. Goswami, “A comparison
between genetic algorithm and cuckoo search algorithm to minimize the
makespan for grid job scheduling,” in Advances in Computational In-
telligence: Proceedings of International Conference on Computational
Intelligence 2015. Springer, 2017, pp. 141–147.

[8] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 13, no. 3, pp. 260–274,
2002.

[9] E. Ilavarasan, P. Thambidurai, and R. Mahilmannan, “Performance ef-
fective task scheduling algorithm for heterogeneous computing system,”
in Parallel and Distributed Computing, 2005. ISPDC 2005. The 4th
International Symposium on. IEEE, 2005, pp. 28–38.

[10] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for hetero-
geneous systems by an optimistic cost table,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 25, no. 3, pp. 682–694, 2014.

[11] E. U. Munir, S. Mohsin, A. Hussain, M. W. Nisar, and S. Ali, “Sdbats:
a novel algorithm for task scheduling in heterogeneous computing
systems,” in Parallel and Distributed Processing Symposium Workshops
& PhD Forum (IPDPSW), 2013 IEEE 27th International. IEEE, 2013,
pp. 43–53.

[12] Y. Xu, K. Li, J. Hu, and K. Li, “A genetic algorithm for task scheduling
on heterogeneous computing systems using multiple priority queues,”
Information Sciences, vol. 270, pp. 255–287, 2014.

[13] C. Fan, H. Deng, F. Wang, S. Wei, W. Dai, and B. Liang, “A
survey on task scheduling method in heterogeneous computing system,”
in Intelligent Networks and Intelligent Systems (ICINIS), 2015 8th
International Conference on. IEEE, 2015, pp. 90–93.

[14] Y. Xu, K. Li, L. He, L. Zhang, and K. Li, “A hybrid chemical
reaction optimization scheme for task scheduling on heterogeneous
computing systems,” IEEE Transactions on parallel and distributed
systems, vol. 26, no. 12, pp. 3208–3222, 2015.

[15] M. Oussalah, D. Professor Ali Hessami, N. Jafari Navimipour, A. Ma-
soud Rahmani, A. Habibizad Navin, and M. Hosseinzadeh, “Job
scheduling in the expert cloud based on genetic algorithms,” Kybernetes,
vol. 43, no. 8, pp. 1262–1275, 2014.

[16] S. G. Ahmad, C. S. Liew, E. U. Munir, T. F. Ang, and S. U. Khan,
“A hybrid genetic algorithm for optimization of scheduling workflow
applications in heterogeneous computing systems,” Journal of Parallel
and Distributed Computing, vol. 87, pp. 80–90, 2016.

[17] S. G. Ahmad, E. U. Munir, and W. Nisar, “Pega: A performance effec-
tive genetic algorithm for task scheduling in heterogeneous systems,” in
2012 IEEE 14th International Conference on High Performance Com-
puting and Communication 2012 IEEE 9th International Conference on
Embedded Software and Systems, June 2012, pp. 1082–1087.

[18] A. Deldari, M. Naghibzadeh, S. Abrishami, and A. Rezaeian, “A
clustering approach to scientific workflow scheduling on the cloud
with deadline and cost constraints,” Amirkabir International Journal
of Modeling, Identification, Simulation & Control, vol. 46, no. 1, pp.
19–29, 2014.

[19] L. Wang, S. U. Khan, D. Chen, J. KołOdziej, R. Ranjan, C.-Z. Xu,
and A. Zomaya, “Energy-aware parallel task scheduling in a cluster,”
Future Generation Computer Systems, vol. 29, no. 7, pp. 1661–1670,
2013.

[20] G. Wu, J. Liu, M. Ma, and D. Qiu, “A two-phase scheduling method
with the consideration of task clustering for earth observing satellites,”
Computers & Operations Research, vol. 40, no. 7, pp. 1884–1894, 2013.

[21] Q. Tang, S.-F. Wu, J.-W. Shi, and J. Wei, “Optimization of duplication-
based schedules on network-on-chip based multi-processor system-on-
chips,” IEEE transactions on parallel and distributed systems, 2016.

[22] J. Singh and N. Auluck, “Dvfs and duplication based scheduling for op-
timizing power and performance in heterogeneous multiprocessors,” in
Proceedings of the High Performance Computing Symposium. Society
for Computer Simulation International, 2014, p. 22.

[23] Y. Zhang, Y. Inoguchi, and H. Shen, “A dynamic task scheduling
algorithm for grid computing system,” in Parallel and Distributed
Processing and Applications. Springer, 2004, pp. 578–583.

[24] G. Wang, Y. Wang, H. Liu, and H. Guo, “Hsip: A novel task scheduling
algorithm for heterogeneous computing,” Scientific Programming, vol.
2016, 2016.

[25] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. F. da Silva, M. Livny et al., “Pegasus, a work-
flow management system for science automation,” Future Generation
Computer Systems, vol. 46, pp. 17–35, 2015.

[26] D.-K. Kang, S.-H. Kim, C.-H. Youn, and M. Chen, “Cost adaptive
workflow scheduling in cloud computing,” in Proceedings of the 8th
International conference on ubiquitous information management and
communication. ACM, 2014, p. 65.

[27] J. Mei, K. Li, and K. Li, “Energy-aware task scheduling in heteroge-
neous computing environments,” Cluster Computing, vol. 17, no. 2, pp.
537–550, 2014.

471471

