
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— The unprecedented capabilities of monitoring and

responding to stimuli in the physical world of wireless sensor and

actuator networks (WSAN) enable these networks to provide the

underpinning for several Smart City applications, such as

structural health monitoring (SHM). In such applications, civil

structures, endowed with wireless smart devices, are able to self-

monitor and autonomously respond to situations using

computational intelligence. This work presents a decentralized

algorithm for detecting damage in structures by using a WSAN.

As key characteristics, beyond presenting a fully decentralized

(in-network) and collaborative approach for detecting damage in

structures, our algorithm makes use of cooperative information

fusion for calculating a damage coefficient. We conducted

experiments for evaluating the algorithm in terms of its accuracy

and efficient use of the constrained WSAN resources. We found

that our collaborative and information fusion-based approach

ensures the accuracy of our algorithm and that it can answer

promptly to stimuli (1.091s), triggering actuators. Moreover, for

100 nodes or less in the WSAN, the communication overhead of

our algorithm is tolerable and the WSAN running our algorithm,

operating system and protocols can last as long as 468 days.

Index Terms— Decentralized Algorithm, Information Fusion,

Structural Health Monitoring, Wireless Sensor and Actuator

Networks

I. INTRODUCTION

DVANCED sensing systems play a major role as

enabling technologies to build smart cities [15]. In smart

cities, infrastructures, such as bridges and buildings, are

equipped with smart sensing and actuator devices

interconnected via wireless links composing a wireless sensor

and actuator network (WSAN) [1]. The WSAN nodes are able

This work was conducted during a scholarship supported by CAPES at

Universidade Federal do Rio de Janeiro. This work was supported in part by

CNPq under grants 304941/2012-3, 473851/2012-1, 477223/2012-5, and

307378/2014-4; by Inmetro/Pronametro; and by FAPERJ under grant JCNE

E-26/102.961/2012. Albert Zomaya’s work is supported by the Australian

Research Council Discovery Grant DP130104591.

I.L. Santos, L. Pirmez, F.C. Delicato and P.F. Pires are with the Uni-

versidade Federal do Rio de Janeiro – 21941-901, Rio de Janeiro, RJ, Brasil

(e-mails: igorlsantos@gmail.com; luci.pirmez@gmail.com; fdeli-

cato@gmail.com; paulo.f.pires@gmail.com).

L.R. Carmo is with the Instituto Nacional de Metrologia, Qualidade e

Tecnologia (Inmetro) – Av. N. S. das Graças, 50 – 25250-020, Duque de

Caxias, RJ, Brasil (e-mail: lfrust@inmetro.gov.br).

S. U. Khan is with the North Dakota State University, ND, USA (e-mail:

samee.khan@ndsu.edu).

A.Y. Zomaya is with the University of Sydney, NSW 2006, Australia; (e-

mail: zomaya@it.usyd.edu.au).

.

to measure a variety of environmental parameters, process the

sensing data locally, work in a collaborative way, make

decisions on the occurrence of relevant events, and react to

such events performing local control actions or sending

warnings to remote operators. Applications running on top of

WSAN are able to provide a wide variety of services to the

citizens.

An important application domain in smart cities is the

smart building [16]. A smart building can be defined as a

structure in which technologies and processes are used to

increase security and comfort for occupants, to minimize

power consumption and to increase operational efficiency for

its owners. Among the features to increase the security of

building occupants, a major requirement is to monitor the

building structural integrity. To assess the structural health of

buildings and make proper decisions to keep such structures in

good service, structural health monitoring (SHM) [4]

techniques are employed.

The SHM is an emerging technology, dealing with the

development and implementation of continuous and reliable

monitoring systems for civil infrastructure using a dense

WSAN. The sensing devices commonly used for SHM

applications are strain gauges, anemometers, thermistors, and

accelerometers. These devices collect data from the monitored

environment, such as vibration measurements using

accelerometers, and deliver them as digital data. Therefore, by

processing this data, the SHM techniques allow the detection,

localization and extent determination of damage in structures.

Most of the SHM algorithms found in the literature

employ centralized architectures with sensing nodes

transmitting messages to a centralized entity wherein the

damage detection processes effectively happen [4]. One of the

major drawbacks of a centralized architecture is the additional

delay on top of control response time, because of the

aggregated communication delay between sensor and actuator

nodes. A feasible approach to overcome this architectural

restriction is to perform damage detection processes inside the

WSAN nodes. It is noteworthy to mention that by taking the

damage detection processes off the centralizing entity and

incorporating them into the WSAN, new challenges arise.

A key challenge is how to maximize WSAN lifetime

while maintaining the functionality of damage detection

within the network. Once in the decentralized approach the

WSAN nodes have the additional burden of performing

damage detection processing beyond just monitoring physical

variables and transmitting messages, the development of

solutions to save the network energy becomes even more

pressing. Such reduction in energy consumption is important

A Decentralized Damage Detection System for

Wireless Sensor and Actuator Networks

Igor L. Santos, Luci Pirmez, Luiz R. Carmo, Paulo F. Pires, Flávia C. Delicato, Samee U. Khan,

Senior Member, IEEE and Albert Y. Zomaya, Fellow, IEEE

A

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

since WSAN nodes have very limited energy resources, often

supplied by non-rechargeable batteries. One possible approach

used to reduce the WSAN energy consumption is developing

energy efficient techniques, protocols and strategies [1].

Among these techniques, information fusion algorithms are a

promising option [2], which we adopted in this work, as well

as in our previous work [5]. Information fusion algorithms

exploit the processing capacity of the sensor nodes and the

inherent redundancy of the sensor-generated data to reduce the

need of data transmissions, thereby trading the communication

energy costs by processing energy costs. Since radio

transmissions are major sources of energy consumption in

WSANs, while processing cycles are minor sources [4], the

approach of data reduction uses the available energy

efficiently to extend the WSAN lifetime.

In the algorithm proposed in this paper, we make use of

an information fusion process that acts in the three data

abstraction levels (measurement, feature and decision) often

considered in the information fusion literature [2]. This is

usually the case of a fully in-network SHM process (from data

collection to decision making about structural damage

detection), thus our proposal is classified as a multilevel

fusion process, according to [2]. It is noticeable, specifically in

the SHM literature, the widespread use of damage coefficients

as results of multilevel fusion processes [3], [4], [5]. In

general, the numerical value of damage coefficients is

understood as a representation of the damage in the monitored

structure. The immediate benefit of using information fusion

techniques for calculating a damage coefficient is that only

such coefficient, with a reduced amount of data, is transmitted

for further analysis. Consequently, less energy is spent in the

WSAN due to data transmissions.

Besides maximizing WSAN lifetime, a second key

challenge is how to develop algorithms capable of supporting

accurate damage detection, in terms of the rate of success in

the detection of damage in different structures. Existing

damage detection algorithms based only in the variation of

modal frequencies, such as our own previous work [5], are

generally less accurate when applied to certain structures

whose modal frequencies do not shift significantly in the

presence of damage. However, for these same structures, other

structural features can also be assessed, such as the vibration

energy related to the modal shapes of the structure, which can

be measured by the amplitude of the corresponding modal

frequencies. The act of assessing information from two

different sources simultaneously to infer decisions is

understood as a type of information fusion called cooperative

fusion [2], and it was not explored in our previous work [5]. A

damage coefficient calculated from both frequency and

amplitude shifts can be interpreted as a local decision about

the existence of damage on the structure. Moreover, this

decision inferred locally by each individual sensor node can

also be exchanged among other WSAN nodes. Through

specific collaboration procedures, the nodes can communicate

their local decisions among themselves, evaluating their

neighbor decisions and reaching a consensus, which may be

more accurate than the single local decision of a node.

Moreover, such collaboration may comprise consensual

multilevel decisions (e.g. floor level, part of building level,

whole building level), that take into account the cooperation

among nodes in the same level to have a broader view of the

monitored structure. Finally, without reducing the data

exchanged, the collaboration would require an unfeasible

amount of energy spent on transmissions. Therefore, the use of

a damage coefficient that uses a small amount of data fosters

the collaboration among the WSAN nodes. Our previous work

[5] performs a collaboration procedure in a single level, while

in our current work we use a multilevel consensus

collaboration.

In this context, our work proposes a decentralized and

information fusion based damage detection algorithm for civil

structures using WSANs. In the algorithm, the nodes have

only a partial view about the integrity of the structure and

collaborate among themselves to reach a consensual multilevel

decision to have a broader view of the result of damage

detection. Thus, our proposal can be also classified as a

localized algorithm [7]. Another key characteristic of our

algorithm is that it is based on the concept of cooperative

information fusion. Moreover, a new damage coefficient,

called cooperative damage coefficient (CDC), is proposed as a

representation of local decisions made by each WSAN node.

The CDC describes the damage using only a few bits

representing which modes of vibration had variations, in terms

of both frequency and amplitude shifts simultaneously.

The remainder of this paper is organized as follows:

Section II discusses related work. Section III presents the

proposed algorithm. Section IV describes the implementation

of our algorithm in WSAN nodes. Sections V and VI present

our experimental evaluation methodology and the results of

performed experiments. Finally, Section VII presents

conclusions and future research directions.

II. RELATED WORK

In this section, we present existing approaches for damage

detection algorithms that are fully decentralized, highlighting

their advantages and drawbacks in relation to our work. Gao et

al. [3] proposed a strategy for damage detection and

localization on a truss structure. They adopt a WSAN

hierarchically divided into clusters, reducing the amount of

transmissions in the network, since it is not necessary that all

sensors forward their data to the sink. At the same time, since

the amount of data sent to the sink is smaller and already

condensed, there is a reduction in the time of damage

identification. A differential of our work regards our proposed

damage representation, the CDC, which is able of representing

damage using a smaller amount of data than in [3], and uses

information from both amplitude and frequency shifts

simultaneously. Thus, our proposal achieves faster execution

of control actions and energy saving, as well as a higher

accuracy in the result of damage detection.

Santos et al. [5] proposed a decentralized algorithm called

Sensor-SHM, for damage detection, localization and extent

determination in civil structures using a WSN. Sensor-SHM

uses a cluster-based topology. Our proposal retains the

original idea of [5] regarding to the strategy of comparing the

respective currently measured modal properties with the

modal properties measured at the beginning of the algorithm

operation (healthy states). However, unlike [5], the decision

making process of damage detection in our work is performed

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

collaboratively between the neighboring sensor nodes without

the help of the sink node, neither the cluster-head, and we use

a flat topology. Our proposal also includes the concept of

cooperative information fusion, using information of both

natural frequency shifts and frequency amplitude variation

simultaneously for detecting damage, while in [5] only the

natural frequency shifts is used to calculate the damage

coefficient. In addition, our damage representation, CDC,

differs from the damage coefficient of [5], which uses a larger

amount of data for representing damage. Our CDC represents

an advance in relation to [5]. The CDC is used for indicating

which modal frequencies have changed using only an amount

of data in the scale of bits. Therefore, the CDC summarizes

only the information about all frequencies/amplitudes that

shifted due to damage. The damage index used by Sensor-

SHM requires more bytes for being represented than our

proposed CDC. Therefore, our work has a higher degree of

data reduction than [5].

III. DESCRIPTION OF THE PROPOSED ALGORITHM

A. Assumptions

The procedures of our algorithm are performed by the set

of WSAN nodes (excluding sink nodes) deployed over a

monitoring area of a structure. We consider that each node

may be equipped with both sensing and actuating devices. We

consider two roles for the nodes: (i) sensor (SENs) and (ii)

actuator (ATNs). Such roles are set during the algorithm setup

phase, when the respective logical capabilities of nodes are

defined as active or non-active. A same node may have only

the SEN role set, or only the ATN role or even both SEN and

ATN roles simultaneously. A SEN is considered the basic

“sensing, processing and decision unit” in the WSAN. Such

nodes are equipped with at least one physical sensing device,

and have their logical sensing capability active. Similarly,

each ATN is considered the basic “actuation unit” in the

WSAN. Such nodes are equipped with at least one physical

actuation device. Both SEN and ATN nodes have unique non-

zero network addresses.

We identify the single sink node (SKN) in the network by

the address 0, being also a role set during the setup phase. The

SKN serves as a gateway between the WSAN and external

networks. It has no sensing units and unlimited power supply.

Therefore, the SKN is an intermediate between the human

operators and the WSAN nodes, disseminating commands in

the WSAN and collecting reports from actions performed on

the structure. Finally, before the algorithm starts, the network

must be already deployed on the structure to be monitored.

B. Algorithm overview

Our algorithm encompasses a sequence of procedures

performed in two main phases. Initially, a setup phase is

performed, starting right after the network is physically

deployed. The procedures of this phase are performed for all

the network nodes and consist on setting the algorithm initial

parameters and performing required initializations. Thereafter,

the monitoring cycle phase (Section III.D) starts and consists

in a main loop. In our algorithm, the structural monitoring is

performed periodically, and each period is based on a new

data collection.

The monitoring cycle starts when the SKN schedules the

beginning of the next data collection, by disseminating a

message for the whole network, assuming that the network is

properly synchronized. Such approach does not generate a

significant energy/communication overhead on the WSAN

since the data collection is not frequent. In SHM applications,

the frequency of data collection is typically set at once an hour

or once a day, because damage progression in civil structures

is typically slower than such interval [4]. Then, data collection

starts at the time scheduled by the SKN. All the SENs collect

acceleration data from the structure simultaneously. Next,

each SEN performs a fast Fourier transform (FFT) [4] over the

collected data and, from the resulting power spectrum, extracts

the current values of natural frequencies and amplitudes. The

parameters required to perform data collection and feature

extraction were set during the setup phase. Next, the SENs

perform a local evaluation of the CDC. First, the current

values of frequency and amplitude are compared with the

respective reference (healthy) values (obtained during the

setup) and shifts (deviations from the healthy values) are

calculated. The CDC is calculated from such shifts that exceed

a given threshold (set during the setup phase). According to

the rules used for local evaluation of the CDC, each SEN may

locally decide that there is damage on the structure and,

therefore, neighbor SENs must collaborate (exchanging their

respective CDCs) among themselves for reaching a consensus

on this decision-making.

After a consensual decision about the structure integrity is

reached, SENs send messages for the respective ATNs,

informing which control actions should be performed. Finally,

on receiving a message from the SEN, the ATNs perform the

respective actions and send their reports to the SKN,

concluding the monitoring cycle.

C. Setup phase

The setup phase encompasses six procedures that are

performed for all the nodes in the network. This phase starts

with the boot() procedure that represents the hardware

initializations of each node, required for making the node

operational and ready to run the algorithm. During the boot

procedure the NodeID parameter is set. The NodeID stores a

unique identification for each node in the network. Next, the

set_role() procedure starts, setting the logical sensing and

actuating capabilities of the node. These capabilities identify,

during the execution of the algorithm, the respective SEN,

ATN or SKN role for a node. All the roles can be set by

human operators and disseminated in the network through the

SKN. After, the init() procedure is performed, which consists

of setting the initial values of the following parameters (that

can be specifically defined for monitoring different

structures): (i) number of modes of vibration of interest

(NModes), (ii) frequency and amplitude variation limits

(LFreqs and LAmps, respectively), (iii) number of collected

samples (NSampl), (iv) sampling rate (SamplRate), and (v)

network addresses of the neighbor nodes (NeNodeID). The

neighborhood of a node is defined from the application point

of view. An expert on the application can divide the

monitoring area into small sensing zones and assign each zone

to a node. Node neighborhood is set based on the sensing

zones dedicated to each node.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

In our algorithm, we consider the assessment of a finite

number of vibration modes of the structure. Each vibration

mode has two features: a corresponding modal frequency

(value) and an associated modal energy (amplitude value). The

values of such features can be extracted from the FFT

calculated within each SEN, based on the data acquired in its

position. The parameter NModes is determined as the exact

value of the amount of relevant vibration modes to detect

damage on the structure. For defining this exact value, it is

necessary to perform a study on the structural properties of the

structure by an expert.

LFreqs and LAmps parameters are data structures of size

NModes. Each position of the respective structure must be set

with a value regarding to a vibration mode, and the positions

of both data structures correspond to the same vibration mode.

Each value set to LFreqs and LAmps is a limit representing the

maximum absolute amount of frequency/amplitude deviation

from the respective reference value, for a given vibration

mode. If a given frequency/amplitude absolute variation is

within the respective limit, then we consider that no shift has

occurred, so preventing small random disturbances, which do

not imply the occurrence of abnormal conditions, from being

considered by our algorithm as such. These limits are

determined for each SEN based on knowledge and analysis of

the structure by an expert. There is no general rule to calculate

such values. We consider that the values for these limits can

be set/updated at any time by the application expert. The

expert may order the dissemination of messages carrying

values for LFreqs and LAmps to the whole network without

disturbing the algorithm operation. Each node, on the event of

reception of such messages, immediately updates its LFreqs

and/or LAmps data structure with the new value. However, we

claim that it may not be enough realistic to assume this

threshold as a static value for the entire lifetime of the

monitoring system. This is because in most monitoring

scenarios, a clear cut deterministic value at which it is possible

to assume that there is structural damage or not does not exist.

As a drawback, this static limit will lead to wrong results

about damage detection, because shifts will be assumed when

they do not exist, or vice-versa. In practice, in most

monitoring scenarios, the values of frequencies/amplitudes

have a time-based dependence on current and past values.

Therefore, it is possible to follow approaches based on

likelihood level for recalculating and updating limits

dynamically. It is possible to consider that these limits could

change after the network deployment, being calculated, for

instance, automatically within each node. In future works, we

can explore approaches existing in the literature for

calculating limits dynamically [19], including the use of

evolutionary algorithms, statistical methods and fuzzy

inference mechanisms. One of such approaches could be

implemented with our algorithm, so that each node could

locally, based on historical data, adjust its threshold. A

function called update_limits() could be called right before

every assessment of frequency/amplitude shifts. However, this

change would cause an impact on node memory, because each

node would need to store the values of frequencies/amplitudes

obtained in the most recent monitoring cycles.

NSampl is set according to the following criteria. It must:

(i) be enough to ensure a good resolution in the power

spectrum that will be returned, which implies in better

precision in the modal frequencies determination; (ii) be a

power of 2, since this is a requirement for the entry of data in

the FFT algorithm; (iii) not exceed the sensors storage

capacity (Flash memory). SamplRate must be: (a) greater than

the value of the first modal frequencies of interest so that these

are shown in the power spectrum, (b) high enough to ensure

accuracy, (c) twice the highest modal frequency of interest, to

meet the Nyquist criterion. NeNodeID is a data structure,

defined for each node, whose elements store the unique

network addresses (NodeID) of all the neighbor nodes. The

first position of the NeNodeID data structure stores the amount

of neighbors of each node.

Each period of the monitoring cycle phase must start at

the same time on all SENs, requiring synchronization [18]

among them, so that there is meaning in the comparison of

their collected data and decisions taken. In our algorithm the

synchronization process is carried out in the

first_time_synchronization() procedure. Such synchronization

process has to be maintained and adjusted during the

monitoring cycle phase. Our algorithm, by definition, is

agnostic to any particular synchronization protocol. The

synchronization can be performed by any WSAN

synchronization protocol in the literature that meets the

requirement of keeping, for long periods of time, the desired

degree of exactness (in terms of temporal deviation among the

clocks of the nodes) in the synchronization, defined by an

expert in the SHM application scenario. The protocol in [8] is

an example of existing synchronization protocols tailored to

WSAN that meet this requirement.

Also as part of the setup phase, SENs must collect the

reference values from its fixed position in the structure and

store them in RefFreqs and RefAmps data structures, during

the ref_values_acquisition() procedure. A procedure

consisting of part of the monitoring cycle (from the beginning

of the monitoring cycle to the feature extraction, as mentioned

in Section III.B) is performed once during the setup phase by

the SENs, to acquire the reference values. Thus, data

structures such as the acceleration samples (AcSampl), the

power spectrum (PwrSpec), Frequencies (Freqs) and

Amplitudes (Amps) are used for the first time in the algorithm

to support the reference values acquisition, but they are the

same used during the monitoring cycle phase.

The AcSampl data structure stores the raw vibration data

obtained from the accelerometers of the SENs, and the

PwrSpec data structure stores the output of the FFT performed

over the data in AcSampl. The Freqs and Amps data structures

store, respectively, the values of frequencies and amplitudes

extracted from the PwrSpec. The Freqs, Amps, RefFreqs and

RefAmps data structures have the same sizes, equal to

NModes. The same position in each of such data structures

stores a value respective to the same vibration mode. The

AcSampl and PwrSpec have the same sizes, equal to NSampl.

The data structures cooperative damage coefficient of the

node (CDC) and neighbor CDCs (NeCDCs), as well as the

current monitoring cycle (t), are initialized during this

procedure. The CDC is the artifact used for indicating which

modal frequencies and amplitudes have changed from the

viewpoint of a SEN. The CDC is subdivided into two parts:

shifts in frequencies (Δω) and shifts in amplitudes (Δa). Both

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

parts are calculated through significant variations between

RefFreqs and Freqs, and RefAmps and Amps, respectively. A

variation is considered significant if it surpasses the limits

stored in LFreqs and LAmps, respectively. If a variation in a

modal frequency/amplitude is not significant, the binary zero

value is attributed to the respective position of the Δω/Δa parts

of the CDC, and the binary one value is attributed otherwise.

Equations (1) and (2) summarize the calculation of Δω and Δa.

Δωi = {
1 if |Freqsi − RefFreqsi| > LFreqsi

0 if |Freqsi − RefFreqsi| ≤ LFreqsi

(

(1)

Δai = {
1 if |Ampsi − RefAmpsi| > LAmpsi

0 if |Ampsi − RefAmpsi| ≤ LAmpsi

(

(2)

Since Δω and Δa have, each, size NModes, the CDC data

structure has a total size of 2xNModes bits. The bits in the first

(most significant) half of CDC represent the variations on the

modal frequencies of the structure (Δω). The bits in the second

half of CDC represent the variations on the amplitudes of each

vibration mode of the structure (Δa). In both halves the most

significant bit refers to the first vibration mode of the

structure, the second most significant bit refers to the second

vibration mode, and so on. The minimum and maximum

decimal values achieved by this coefficient depend on

NModes. For instance, for NModes = 5 the CDC varies in

range 0-1023, being the maximum value achieved when all

amplitudes and frequencies shifted)

The data structure NeCDCs is used during the

collaboration procedure described in Section III.E. Each of its

positions stores the CDC values of a neighbor SEN. Therefore,

NeCDCs has a variable size for each SEN, which is equal to

its number of neighbors. Consequently, NeCDCs and

NeNodeID have the same size for the same node, and this size

is stored in the first position of NeNodeID. The period of the

monitoring cycle to be performed is initialized with value zero

(t=0).

The start_monitoring_cycle() procedure ends with all the

nodes entering in sleep mode, and waiting for the beginning of

the first period of the monitoring cycle.

D. Monitoring cycle phase

The pseudo code of the Monitoring cycle phase is shown

in Table I. The SKN is responsible for verifying if a

monitoring is requested by an external source using the

procedure mon_requested(). This procedure returns True if a

monitoring was requested or False otherwise. If True was

returned, then it also stores in a local variable called time the

respective moment when such monitoring must start. Also if a

monitoring was requested, the SKN is responsible for

reviewing time synchronization for the whole network through

the review_time_synchronization() procedure. The SKN and

SENs have their internal clocks synchronized after this

procedure, and the SKN can then perform the

transmit_schedule_mon_msg() procedure to disseminate a

message to the whole network, which schedules the starting

time of the next period of the monitoring cycle phase.

Upon receiving the message disseminated by the SKN,

the monitoring cycle phase starts for the SENs. During this

phase, the SENs check a variable, through the procedure

schedule_mon_msg_rcvd(), to find out if a schedule

monitoring message was received. If so, the SEN performs the

schedule_mon() procedure, passing as a parameter the time

informed in the message received from the SKN. Such

procedure defines the moment when the SEN monitoring must

start, setting its internal timer to fire in such a moment. The

SENs check through the start_mon() procedure when the timer

fired. If the timer was fired, then the start_mon() procedure

returns True, and the SEN increments the counter, for

identifying the next period of the monitoring cycle to be

performed.

At the beginning of every period of the monitoring cycle,

each SEN collects the acceleration data in the time domain at

its relative position through the data_collection() procedure,

passing the SamplRate and NSampl as parameters. As a result,

the data_collection() procedure fills the AcSampl data

structure with the collected data. Next, the SEN performs a

FFT on the respective collected data stored in AcSampl (of

size NSampl). The result of the FFT is stored in the PwrSpec

data structure. Then, the feature_extraction() procedure is

performed to extract the modal frequencies and amplitudes

features in the power spectrum stored in the PwrSpec data

structure. After extracting and storing the respective values

from the power spectrum, each SEN is able to calculate its

CDC through procedure calc_CDC(), using information from

Freqs, Amps, RefFreqs, RefAmps, LFreqs and LAmps, as

described in Section III.C. Also, a check is performed using

the variations_due_damage() procedure, passing the recently

calculated CDC as a parameter. This procedure represents the

local decision of the SEN that consists of checking all the

positions (bits) of the CDC, and verifying if at least two are

different from the binary zero. If such damage is found

locally, the SEN must reinforce the existence of the damage

starting a collaboration with neighboring SENs, performing

the start_collaboration() procedure. This procedure is

TABLE I

PSEUDO CODE OF THE MONITORING CYCLE PHASE

 while True:
 if!SENRole && !ATNRole && SKNRole then:
 def time
1: if mon_requested(time) then:
2: review_time_synchronization();
3: transmit_schedule_mon_msg(time);
 end-if
 else-if SENRole && !SKNRole then:
 def time
4: if schedule_mon_msg_rcvd(time) then:
5: schedule_mon(time);
 end-if
6: if start_mon() then:
7: t+=1
8: data_collection(AcSampl,NSampl,_

 SamplRate);
9: perform_FFT(NSampl,AcSampl,PwrSpec);
10: feature_extraction(PwrSpec,Freqs,Amps);
11: calc_CDC(CDC,Freqs,Amps,RefFreqs,_

 RefAmps,LFreqs,LAmps);
12: if variations_due_damage(CDC)>1 then:
13: start_collaboration();
 end-if
 end-if
 else-if ATNRole && !SKNRole then:
 def ActRules
14: if actuation_msg_rcv(ActRules) then:
15: trigger_act(ActRules);
 end-if
 end-if
 end-while

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

performed only by the SENs that locally decided for damage,

and is detailed in Section III.E. All SENs that did not detect

damage are set to sleep until the beginning of the next period

of the monitoring cycle phase.

During the monitoring cycle phase, the ATNs are waiting

for the reception of a message commanding their actuation.

The actuation_msg_rcvd() procedure returns True if an

actuation message was received, and it sets the local variable

ActRules with the actuation rules stored in such message. It is

important to mention that every SEN was set, via application

deployment, with the rules to be used for triggering the

actuators. An example of such a rule is “IF consensual

decision is True THEN turn one led on”, what requires, in case

the actuators are represented by leds, the information of which

led must be turned on. The procedure trigger_act() is

performed if such message is received, with the ActRules

passed as parameters. The procedure trigger_act() triggers the

physical actuation devices of the node.

E. Collaboration procedure

When performing a decision process within a SEN, a

main problem that can arise is that such SEN can be biased

due to, for instance, sensor malfunctioning, malicious

behavior due to attacks, low battery level, environmental

influences or electro-magnetic disturbances [13]. In all such

cases, SENs may cause the wrong behavior of the actuators,

triggering them when not necessary. It is therefore necessary

to mitigate such risk, what can be accomplished by pursuing a

consensual decision for a given SEN neighborhood. By

reaching a consensus among the SENs in a given

neighborhood it is possible to reduce or even eliminate the

influence of faulty SENs. To achieve such a consensus, we

adopt the Byzantine Algorithm described in [13] as our

collaboration procedure. The neighbor SENs participating in

the collaboration process must reach a consensus among

themselves to whether apply a decision or re-evaluate it, based

on the exchanged messages that contain the decisions made by

each of the neighbor SEN.

Another important feature to ensure the scalability of our

algorithm is that the decisions can be made at various levels.

Each level represents a new consensus, for example, a

building level would represent the consensus of all floors, and

a floor level is a consensus of all nodes in a given floor. To

achieve a decision process for supporting decisions at different

levels, we have used a consensus algorithm for multilevel

decisions (Table II).

The key idea of our algorithm is as follows. The

collaboration procedure comprises a loop that is repeated for

each given level (L) of the total number of levels (NLev).

Within this loop, through procedure transmit_msg(), each

neighbor SEN informs its decision (stored in variable

Consensus) to the other neighbor SENs that pertain to current

level L. The SENs that detected damage (Consensus = “True”)

will transmit messages to neighbor SENs, otherwise

(Consensus = “False”) no message will be transmitted. When

a SEN does not receive a message from a neighbor, it assumes

that such decision is “False”. After, the SEN waits on its

NeCDCs is completely set with new data from the current

level, or a timeout expires. These checks are performed by

procedure NeCDCs_fully_refreshed(). During this wait, the

msg_rcvd() procedure checks if a message from another SEN

that detected damage arrives. If such message arrives, the

respective decision value is stored in the NeCDCs, by the fill()

procedure. After this wait finishes, procedure

level_consensus() takes the majority of the decisions (among

the local and the received decisions), and uses that as the final

decision for its level. The local variable Consensus has, as

initial value, the current CDC value of the node. For the

second level on, the Consensus variable will store Boolean

values representing the consensual decisions taken at prior

levels. Finally, the current level counter L is increased. After

the consensus was reached at all levels, if the result of the

whole multilevel consensus is “True”, then the node decides if

it must send messages to the SKN and ATN. As proposed in

[13], only the SEN with the smallest NodeID in the

neighborhood of the highest level sends messages to the SKN

and ATN, to reduce the redundancy of messages received by

these nodes. So, the procedure Min() finds the smallest

NodeID among the nodes in the highest level. This SEN

triggers the ATN, through the transmit_actuation_msg(), and

sends a message to the SKN reporting the existence of the

damage, through the transmit_sink_report_msg().

According to the properties of the original Byzantine

Generals Problem [13] our approach is known to work

successfully (ensuring a consensus around the correct decision

at each level) only when the number of participating SENs ‘N’

is at least ‘3M+1’, where ‘M’ is the number of participating

SENs that send an incorrect decision. A decision is considered

incorrect when it assumes damage and the damage does not

exist, or when it does not assume damage when it exists.

Moreover, NLev is a configurable parameter in our algorithm,

to be set by an application expert, according to the type and

size of the structure, application requirements and the goal of

monitoring (eliminating incorrect information or evaluating

the damage extension). However, the energy cost to perform

our multilevel consensus algorithm increases when the number

of nodes in a given level increases.

IV. USE CASE AND IMPLEMENTATION

To evaluate our proposal, we developed a use case in the

domain of SHM for smart buildings. The goal of the use case

is to implement a system based on our proposed algorithm for

monitoring the health of smart city buildings. Among the

TABLE II

PSEUDO CODE OF THE COLLABORATION PROCEDURE

 while (L<NLev):
1: transmit_msg(Consensus,NeNodeIDs,L);
2: while !NeCDCs_fully_refreshed(L):
3: def rcvd
 if msg_rcvd(rcvd) then:
4: fill(NeCDCs,L,rcvd);
5: end-if
 end-while
 Consensus=lev_consensus(Consensus,NeCDCs,L)
6: L+=1;
7: end-while
 if Consensus then:
8: if Min(NeNodeIDs,NodeID,L-1)==NodeID then:
9: transmit_actuation_msg();
10: transmit_sink_report_msg();
11: end-if
 end-if

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

requirements of a smart building, it must ensure the safety of

the people living in it, especially considering seismic actions.

Frequently, buildings are closed for months to undergo a

detailed inspection, in case of relevant seismic events, for

ensuring the safety of the people. Such approach is inefficient.

For illustrating this scenario, consider a smart building

composed of several floors, with a WSAN deployed on each

of the floors. Within each floor, sensors are deployed in key

locations where the shock response of the structure is the

highest. These locations are defined by an expert in the

structure and can be, for instance, joints of floor plates and/or

joints of plate beams with columns. In the same edge of each

floor, consider the deployment of respective sink nodes of

each WSAN, each of which attached to a local standard PC.

These sink nodes serve as gateways and connect all the floors

through the building local area network (LAN). The LAN

connects to the Internet by using existing wireline or wireless

broadband internet connections (ADSL, VDSL, Satellite,

WiMax) in the building.

In this building, our collaboration algorithm is configured

with two consensus levels: floor level and building level. Each

level represents a new consensus, i.e. a building level

represents the consensus of all floors about the structural

integrity of the building, and a floor level is a consensus of all

nodes in a given floor about the integrity of the floor. The sink

nodes of each level can be assigned as the node with the

smallest NodeID of a given floor, and so they will partake in

the consensus of the whole building level. It is worth

mentioning that each WSAN must be deployed so that its

extension is not excessive, to avoid generating long delays in

the final consensus on damage. If a large-scale deployment is

foreseen within one level, then it must be divided into smaller

consensus levels, to avoid obstacles in the monitoring area.

Therefore, routing impairment problems such as shadowing

(by big concrete slabs and pillars), that may render neighbor

nodes blind to each other, will be avoided. Regarding

actuators, each floor of the smart building is outfitted with

stoplight-style signs that automatically announce structural

soundness.

The WSAN deployed in each floor consists of MICAz

motes [10], whose radio supports 2.40-2.48 GHz band and 250

kbps data rate. Each MICAz mote includes the board

containing the processor, radio, memory and batteries. The

common energy source of MICAz motes consists of two AA

batteries, which provide up to 16 kJ of energy, as estimated in

[4]. The motes are programmed in NesC language, under the

TinyOS development environment [9], version 2.1. For

dealing with communication at the physical layer, we adopted

the standard 802.15.4 protocol implementation provided by

TinyOS. For dealing with the transmission of point-to-point

messages at link-level, we adopted the Active Message

protocol [9] implementation, also provided by TinyOS. The

maximum payload size allowed for the messages exchanged,

limited by TinyOS 2.1, is 28 bytes. The implementation of our

algorithm itself consists of a single program running inside

each mote. Our algorithm runs over the BMAC protocol [23]

in the MAC layer. Using pure physical layer information, the

BMAC is capable of detecting neighboring wake-up

transmissions on the channel. Consequently, BMAC allows

nodes to get into deep-sleep state until wake-up transmissions

are detected. Our algorithm and the BMAC work

independently. When a node in our algorithm becomes idle, it

does not make transmissions anymore. Therefore, it is a matter

of time until the BMAC protocol returns nearby nodes to

deep-sleep. Besides, since the monitoring cycle starts when

the SKN disseminates a message for the whole network, nodes

in deep sleep will be woken up by the SKN transmission

during one of the periodic receive checks of BMAC.

Therefore, the use of BMAC contributes for saving nodes’

energy during the idle time of our algorithm.

In our implementation, the SamplRate and NSampl were

set to 1kHz and 512 samples, respectively. We also set the

feature extraction method to extract the first five modal

frequencies of the frequency spectrum (NModes = 5). Other

works, such as [3] also used similar amounts of modal

frequencies in their experiments. This amount is sufficient to

perform the analysis of the health of a civil structure in the

range of 500 Hz in the spectrum (half the SamplRate,

according to the Nyquist criterion [5]).

The resource constraints of the SENs imply in the

implementation of a less precise feature extraction method

than conventional methods, such as the PCF from [4], since

the chosen feature extraction method must run completely

within the SEN. Thereafter, to identify the frequency peaks,

we used the method proposed by [5], which takes as input the

desired frequency ranges and calculates the frequency value of

the highest peak in that range, returning such frequency and its

respective amplitude values. However, the lack of precision of

this method can be balanced by increasing the number of

SENs in the monitoring area for data redundancy.

We programmed the ATN to toggle a LED for simulating

an actuation function when receiving an actuation message. In

a real environment, this actuation would consist in setting

values of stoplight-style signs, or communicating to the

building operation center/supervisors.

Finally, our prototype uses four types of messages to

perform communication among motes: schedule monitoring

message, CDC message, actuation message, and sink report

message. The schedule monitoring message has two bytes in

its payload to transport the value of time representing the

moment when the monitoring should start (this amount of

bytes is the default amount used to represent an interval in

TinyOS 2.1). The CDC message has two bytes in its payload,

since the CDC data structure has size 2xNModes bits (10 bits),

but in TinyOS 2.1 the message structure must be represented

by a round number of bytes (two bytes can represent 10 bits).

The actuation message has a null payload (no configuration is

required to perform the action programmed in our prototype).

The sink report message has a four bytes payload, two for

storing the CDC of the current node, and two for the NodeID

of the current node. It is important to mention that each

message type requires an extra 8-byte header (in TinyOS 2.1).

V. EVALUATION METHODOLOGY

A. Evaluation metrics

Considering the objectives of this work and following the

Goal Question Metric (GQM) methodology [12], three goals

were defined. Goal G1 is to analyze our algorithm for the

purpose of evaluating its accuracy, in terms of successes in the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

detection of damage in civil structures. Goal G2 is to analyze

our algorithm for the purpose of evaluating its overhead in

terms of the consumption of computing, communication and

energy resources of the WSAN. Goal G3 is to analyze our

algorithm for the purpose of evaluating its response time in

terms of the duration of a period of the monitoring cycle

phase. These goals were refined in six questions. Questions

Q1 and Q2 relate to goal G1, questions Q3, Q4 and Q5 relate

to goal G2, and question Q6 relates to goal G3. Q1: How does

the use of cooperative information fusion contribute to the

accuracy of our algorithm? Q2: How does the use of the

collaboration procedure contribute to the accuracy of our

algorithm? Q3: How long can the WSAN last when running

our algorithm, operating system and protocols? Q4: Does the

communication overhead of our algorithm impact the correct

operation of our proposed collaboration procedure? Q5: How

does the multilevel decision procedure (collaboration

procedure in Section III.E) impact the overhead of our

algorithm? Q6: How fast can our algorithm respond

(triggering actuators), since the beginning of a period of the

monitoring cycle phase?

Finally, metrics are defined (Table III) to support the

answers to the questions. Regarding Q1 and Q2, we used the

metrics: true positives (TP), true negatives (TN). The TP

metric counts the number of situations in which our algorithm

detects damage that actually occurs during a period of the

monitoring cycle phase. The TN counts the number of

situations in which our algorithm does not detect damage

during a period of the monitoring cycle phase, and it in fact

did not occur. The quantity TP+TN is referred in this work as

the amount of trues, which denotes the number of situations in

which our algorithm makes correct damage detection or not.

For Q3 and Q5 we defined the WSAN lifetime (WL) metric as

the time elapsed from the beginning of the algorithm

execution until the moment in which the WSAN is not able to

achieve its main goal. In our work, the main goal is to perform

the damage detection and actuation. Because of the

collaboration procedure, at least one ATN and two or more

SENs are required for achieving the main goal. The WL is

calculated based on the energy consumption value measured

for a mote during a period of the monitoring cycle, and the

initial amount of energy of this mote.

Regarding Q4 and Q5, we defined three metrics: the

amount of bytes received by each SEN (ABR), the amount of

bytes transmitted by each SEN (ABT) and the packet loss rate

(PL). The ABT is calculated as the sum of the bytes

transmitted by a single SEN, in average, during one period of

the monitoring cycle phase. The ABR is calculated similarly,

but for the sum of bytes received by a single SEN. The PL is

calculated as the ratio between the number of packets lost by a

receiver SEN (packets which did not reach the correct

destination of this SEN) and the total amount of packets

transmitted to this same SEN, in average, during one period of

the monitoring cycle phase. Regarding Q5, we defined two

metrics: percentage of free bytes in RAM (BR) and percentage

of free bytes in flash memory (BF). The BR metric results

from the subtraction of the RAM occupation of the

implemented program from the total amount of RAM in the

MICAz platform. The BF is defined similarly, but for the

Flash memory. Finally, for Q6 we defined the system response

time (SRT) metric as the time elapsed between the beginning

of a period of the monitoring cycle phase, during which

damage detection is performed, and the reception of a message

by an ATN, pointing that a control action should be

performed.

B. Experimental environment

We used two experimental environments: one simulated

and one with real motes. The environment with real motes has

the goal of validating the results obtained in simulations. We

considered both environments as indoor environments. In each

experiment, we performed 30 repetitions of the period of the

monitoring cycle phase of our algorithm, what provided a

reasonable confidence interval of 95% for the results.

A desktop computer equipped with an Intel Core 2 Duo

2.80 GHz processor and 4 GB of RAM was used to run the

simulations. The simulations were performed with version 2.6

of the Avrora simulator [11], which is an open source

simulator for WSANs. AvroraZ extension [11] was used to

analyze the energy consumption and communication for the

MICAz platform. The energy model used by Avrora is called

“accurate prediction of power consumption” (AEON) [11] and

is the energy model that represents more precisely the

processing cycles of MICAz motes.

The environment with real motes is a simplification of the

environment described in Section IV that considers a

deployment on a single floor (one level) of a building. We

assembled this controlled environment within the wireless

networks laboratory (LabNet), at Universidade Federal do Rio

de Janeiro (UFRJ), where the nodes were kept stationary and

disposed on the ground. In this environment, every message

transmitted on the network was read by the SKN, where a

software program written in Java, connected to the computer

serial interface, recorded messages for further analysis. The

hardware of the SKN consisted on a MICAz mote connected

via USB cable to a desktop computer equipped with an Intel

Core 2 Duo 2.80 GHz processor and 4GB of RAM.

In the environment of the experiments: (i) the acceleration

data collected by each SEN were simulated (as in [5]); (ii) we

used a methodology to simulate damage that gradually inserts

damage in the structure, so that the collected acceleration data

is properly changed for reflecting the damage; (iii) the values

of modal amplitudes and frequencies used as input for this

simulation were extracted from a plate structure in [6]; and

(iv) we assumed that only natural excitation was sufficient to

excite the modes of vibration of the structure.

In this work, we use a flat and static WSAN topology.

The NeNodeIDs data structures are filled with fixed values

before the beginning of our algorithm operation, so that the

SENs, ATNs and SKN are always the same nodes (no rotation

of roles). Our algorithm also assumes that the WSAN nodes

TABLE III

METRICS AND ACRONYMS

Metric Question

True positives (TP) / True negatives (TN) Q1, Q2

WSAN lifetime (WL) Q3, Q5

Amount of bytes rx (ABR) / tx (ABT)
Q4, Q5

Packet loss rate (PL)

Percentage of free bytes in RAM (BR) / flash (BF) Q5

System response time (SRT) Q6

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

have their clocks synchronized. However, this synchronization

requirement is only essential when considering the collection

of real data from the structure, using real accelerometers. Once

collected acceleration data were simulated, as described in

Section 5.3, implementing data synchronization is not

necessary. The delay with which each sensor node begins its

period of the monitoring cycle phase is minimal. It is only a

result of the time between consecutive transmissions of two

messages requesting data collection. In the prototype

implemented in TinyOS, this time is approximately 10ms.

Studies found in the WSAN literature [1] make use of the

multi-hop transmission scheme in their experiments due to the

low radio range of the motes and the great distances between

the motes and the sink node. However, in the performed

experiments, the distances between the motes are small, as

also in related works [4]. Therefore, all motes are within the

same coverage area of each other, eliminating the need of

using a multi-hop transmission scheme. In the case of

adopting structures with dimensions larger than those used in

the present work, the multi-hop transmission scheme should

be reconsidered for possibly improving the network

scalability.

VI. EXPERIMENTAL RESULTS

This section describes the results of experiments E1 and

E2, which relate to the goal G1 (Section IV.A) and E3, E4, E5

and E6, which relate to G2 and G3 (Section IV.B).

A. Set of experiments A: accuracy

Experiment E1 was conducted to answer Q1. This

experiment consisted in evaluating our algorithm with and

without the use of cooperative information fusion. Therefore,

three versions of our decision mechanism were considered.

Version VFA uses both modal frequencies and amplitudes

shifts for composing the CDC: it is our implementation

presented in Section IV. Version VF uses only modal

frequencies shifts and version VA uses only modal amplitudes

shifts for composing the CDC. In addition, for performing this

experiment, we considered a deployment scenario similar to

the one used in Santos et al. [5], and the SENs were

considered installed over a plate structure as the one studied in

Reddy and Swarnamani [6]. We replaced the cluster-head

nodes in the original WSAN topology from Santos et al. [5] by

SENs in our work, since we consider a flat network topology.

In this scenario, our multilevel decision procedure was

configured so that all the SENs in the WSAN pertain to the

same and only existing decision level (NLev = 1).

In our scenario, we had one case of healthy structure, and

four cases of damage progression. Each damage case

represents a progression of the damage in the scenario, thus

the damage becomes more evident in the later periods of the

monitoring cycle phase. During the experiments, 150

repetitions were performed, from which 30 repetitions were

performed for the undamaged case and 120 for the four

damage cases (30 for each damage case), and no damage and

undamaged cases were mixed during the same 30 repetitions.

Because we had one case of healthy structure, and four cases

of damage progression, our mix of cases to calculate the TP

and TN metrics was 20% undamaged and 80% damaged.

Using the available mix of cases of damage, the ideal result

for a detection mechanism would be TP = 80% (four of five

damage cases) and TN = 20% (one of five damage cases).

Experiments were performed in both simulated and real

motes environments, showing the same results. Table IV

shows results for TP and TN metrics for experiment E1 for

versions VFA, VF and VA of our algorithm. One of the main

reasons to explain the results of the TP metric column is that

our proposed algorithm depends on at least two shifts (two bits

in the CDC with value = 1) caused by the actual presence of

damage for deciding about damage detection (TP), or it will

assume no damage detection. Considering the cases where

only two shifts occur, when one of such shifts occurs in one of

the monitored natural frequencies, and the other shift occurs in

one of the monitored amplitudes, Version VFA will assume

damage detection, and such cases will be accounted as TP (TP

= 77,33%). However, versions VF and VA will perceive only

one shift, not resulting in TP. Still, version VF showed 0% for

TP metric, a value much lower than version VA. This

happened because version VF assesses only the shifts caused

by the variation of natural frequencies, and in the structure

reported in [6] the natural frequencies are not sufficiently

sensitive to damage. However, in the structure reported in [6],

the amplitudes are sufficiently sensitive to damage and,

therefore, version VF is able to detect damage in most of the

cases where it is actually present (TP = 76.00%). Values of

CDC obtained by nodes during the experiments that fit in each

of the aforementioned cases are shown in Fig. 1. For

explaining the results of the TN column in Table IV, the same

reason (related to the use of cooperative information fusion)

applies. Since version VF (TN = 20%) is not sufficiently

sensitive to damage, it never assumes damage detection in any

case, what is convenient when damage is actually not present

in the structure but severely inconvenient when damage is

actually present. Versions VFA and VA showed the same

values of TN, because both versions assess the shifts in

amplitude, which are sufficiently sensitive to damage. From

the results in Table IV we can see that our algorithm (version

VFA) performed well in terms of reaching values of TP and

TN close to the ideal situation (amount of trues = 93.83%).

Responding to Q1, the use of cooperative information

fusion contributes to ensure higher levels of accuracy, since

assessing both frequencies and amplitudes simultaneously

allowed a better performance of our algorithm full

implementation (VFA). Our algorithm showed a higher

amount of trues than versions VF and VA, which assessed

only one feature at a time.

Experiment E2 was conducted to answer Q2. This

experiment consisted in evaluating the algorithm with and

without the use of our collaboration procedure. Therefore, we

considered six versions of our algorithm: versions VFA, VF

TABLE IV

RESULTS OF THE EXPERIMENTS E1 AND E2

Version TP (%) TN (%) Amount of Trues (%)

VFA 77.33 16.50 93.83

VF 0.00 20.00 20.00

VA 76.00 16.50 92.50

VFAw 77.33 10.83 88.17

VFw 0.00 16.83 16.83

VAw 76.00 10.00 86.00

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

and VA, the same used in experiment E1, which have the

collaboration mechanism implemented, and versions VFAw,

VFw and VAw that are based on versions VFA, VF and VA,

but without the collaboration mechanism implemented. In

versions VFAw, VFw and VAw, every SEN forwards its

decision to the ATN based only on its local view (without

consensus). We considered the same scenario used in

Experiment E1. Table IV shows the results for experiment E2.

Comparing the results from experiments E1 and E2, we

observe that the absence of the collaboration mechanism had a

great negative impact on the amount of trues (reducing it).

Therefore, versions VFAw, VFw and VAw performed worse

than versions VFA, VF and VA. In addition, since changes in

the rates of TP were not perceived between each respective

version, such decrease for Trues was due to a decrease for TN

in all versions without the collaboration mechanism. Such a

decrease is explained by the fact that, in the absence of the

collaboration mechanism, some SENs which perceived

changes in their frequencies and/or amplitudes when the

structure was actually undamaged (SENs with an undesired

behavior), started reporting damage. This fact shows the

importance of our collaboration mechanism. Responding to

Q2, the use of the collaboration procedure contributes for

ensuring higher levels of accuracy, increasing the TN rate.

We conclude that goal G1 was achieved. It is also

important to mention that the calculations performed within

each SEN in version VFw are, in fact, close to the calculations

used for damage detection in Sensor-SHM, our previous work

[5]. The results in terms of accuracy obtained in our current

work support the following conclusions. Our (new) proposed

algorithm is suited for the same structures that Sensor-SHM is,

however, due to the use of cooperative information fusion, it is

also capable of detecting damage when the natural frequencies

of the structure are not sufficiently sensitive, or insensitive to

damage, but their amplitudes are sufficiently sensitive to

damage. Therefore, our algorithm is more appropriate for

detecting damage in more diverse structures than Sensor-

SHM.

B. Set of experiments B: overhead

This section presents the results of experiments E3, E4,

E5 and E6, for respectively answering Q3, Q4, Q5 and Q6. As

a point in common, experiments E3 and E4 used the same

scenarios when varying the number of nodes to assess the

scalability of our algorithm when our multilevel decision

procedure was configured so that NLev = 1. Because the

scalability is directly related to the increase in the network

size, we chose to change the monitoring area and the number

of nodes, keeping a constant node density, following other

works such as [14] that used this approach successfully. All

scenarios have a square monitoring area comprising SENs

under a flat WSAN topology. The node density was set to 1

SEN/m², so every SEN is equally spaced from its immediate

SENs by 1m in the y-axis and 1m in the x axis, what is

repeated in every variation pattern. The first pattern had the

minimum amount of SENs required to perform our

collaboration procedure, i.e. 2 SEN in each side (called pattern

P2), which results in a scenario with 4 SENs. We increased

one by one the amount of SENs in each side of the monitoring

area, for generating patterns P3, P4, P5,…, P11. In all patterns,

all SENs are within the radio range of each other and so, every

SEN, is considered a neighbor of every other SEN in the

scenario. For instance, the variation patterns P3, P5, P7, P9

and P11 have 9, 25, 49, 81 and 121 SENs, respectively.

Therefore, each SEN has 8, 24, 48, 80 and 120 neighbors,

respectively in each pattern. Each pattern also has a SKN at

the origin of the Cartesian plane, and an ATN at 1m from the

SKN in the y-axis.

Experiment E3 was conducted to answer Q3. This

experiment consisted in evaluating the WSAN Lifetime (WL

metric) while varying the number of SENs in the scenario

through patterns P2 to P11. In E3, LFreqs and LAmps were set

to zero, so that it is assumed that in all periods of the

monitoring cycle phase, sites with the presence of damage

were found. This is the most demanding scenario in terms of

WSAN resource consumption, since the SENs must

collaborate for reaching a consensus, spending more

communication energy.

Considering that the energy model of the Avrora

simulator was sufficiently validated, we measured the power

consumption from the MICAz motes only through

simulations. We performed one monitoring cycle phase for

assessing the average energy consumption of each node in

each scenario. Thereafter, we calculated the WL metric,

considering one monitoring cycle phase being performed per

hour, while during the remaining time all the WSAN nodes are

in sleep mode. For patterns P2 and P11 the WL was,

respectively, 475 days ± 1 day and 468 days ± 2 days (Fig. 2).

Such decrease in WSAN Lifetime when increasing the number

of SENs is explained by the increase in the communication

overhead during the experiment, as well as the increase in the

radio range of SENs, for communication among the neighbors

in one hop distance. Responding to Q3, the WSAN can last as

long as 468 days, in the worst case, running our algorithm,

operating system and protocols in different scenarios (using

121 or less SENs).

Experiment E4 was conducted to answer Q4. This

experiment consisted in evaluating ABT, ABR and PL metrics

while varying the number of SENs in the scenario. The same

criteria used in E4 for varying the number of SENs were used.

Results are shown for ABR and PL in Fig. 3. The value of

ABT is constant for all scenarios (64 bytes), because every

SEN in our algorithm always transmits the same amount of

messages during a period of the monitoring cycle phase,

regardless of the amount of neighbors in the scenario.

However, each message transmitted by a SEN is accounted as

received by every other neighbor, and more transmissions

occur as the amount of SENs in the scenario increases.

0 0 0 0 0 0 0 0 0 0a)

1 0 0 0 0 0 0 0 0 0b)

0 0 0 0 0 1 0 0 0 0c)

1 0 0 1 0 0 0 0 0 0d)

0 0 0 0 0 1 1 0 0 1e)

1 0 0 0 0 1 0 0 0 0f)

1 1 1 1 1 1 1 1 1 1g)

Fig. 1. Examples of CDC values with: a) no shift (undamaged), b) one
frequency shift (undamaged), c) one amplitude shift (undamaged), d) two
frequency shifts (damaged), e) three amplitude shifts (damaged), f) one
frequency and one amplitude shift (damaged), g) All frequency and
amplitude shifts (damaged).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

Therefore, as shown in Fig. 3(a), ABR increases when the

amount of SENs increases. In addition, as shown in Fig. 3(b),

the increase in the ABT caused more packet losses (only due

to more collisions of messages, since no noise was present in

our simulated environment) in scenarios with more SENs.

We can deduce that, as the PL increases, our collaboration

algorithm becomes less capable of reaching a consensus

around the correct decision. Such deduction is possible when

analyzing the assumption (taken from the original Byzantine

Generals Problem) that the number of participating SENs ‘N’

is at least ‘3M+1’, where ‘M’ is the number of participating

SENs that send an incorrect decision. In other words, the

number of participating SENs that send an incorrect decision

must be, at most, 1/3 of the total number of participating

SENs, for the algorithm to reach a consensus. The packet

losses result directly in the occurrence of false negatives

because when a packet is lost the destination SEN understands

(incorrectly) that the respective decision was ‘False’, when it

was ‘True’ in fact. Therefore, considering that in pattern P11

the PL surpasses 1/3, we conclude that our collaboration

procedure does not perform properly in a scenario with 121

SENs (P11). Since the PL for scenario P10 is lower than 1/3,

for the amount of SENs in pattern P10 our collaboration

procedure is still capable of reaching a correct consensus.

Responding to Q4, the communication overhead of our

algorithm might affect the correct operation of our proposed

collaboration procedure (packet losses impact the capacity of

the byzantine algorithm to reach a consensus) for scenarios

with more than 100 nodes. Scenario P10, with 100 nodes, is

the closest to the limit of the allowed amount of SENs with

incorrect decisions for reaching a correct consensus through

the Byzantine Algorithm in one same domain in the lowest

and only level (NLev = 1).

Experiment E5 was conducted to answer Q5. It consisted

in assessing metrics BF, BR, WL, ABT, ABR and PL when

configuring the multilevel decision procedure with NLev = 2

in scenario P10, and comparing these results with the ones

obtained for a base scenario (the original P1, with NLev = 1).

When configuring NLev = 2 in scenario P10, we considered

the existence of four floors in the building (each comprising

25 SENs concentrated at the four corners of the floor, as if the

original P10 scenario were divided by a cross) at the first and

lowest level of consensus. The second and highest level of

consensus comprised the SKNs of each floor located at the

center of their respective floors. The results obtained in E7

were normalized for comparison with the base scenario. The

results of the base scenario are considered as 100% (having

the same absolute values obtained for scenario P10 in

experiments E3 and E4, i.e. P10 and NLev = 1).

Our multilevel decision procedure affected the overhead

of our algorithm as follows. For NLev = 2 we observed a

reduction of BF and BR in relation to NLev = 1 (of 0.7 and 6.3

percentage points), due to, respectively, an increase in the size

of the program for implementing the multilevel decision

procedure, and an increase in the size of the NeNodeIDs, for

storing the information of the neighborhood at the second

level. The impact over WL was negligible, in the order of 2

hours, so that it did not affect the amount of days achieved for

the WL metric in the base scenario (468 days ± 2 days). This

fact is explained by the additional amount of messages

transmitted to perform the multilevel decision procedure. Such

amount is considerably smaller when compared to the amount

of messages used in the other procedures of the algorithm.

ABT increased only by 0.3%, while ABR increased by 3.7%.

Finally, PL was reduced by 3.6%, because the small amount of

new messages transmitted for performing the consensus at the

second level were not lost, since at this level the

communication was performed only among four SENs,

avoiding collision of messages. Therefore, the new amount of

messages transmitted was accounted as successful

transmissions.

Responding to Q5, the multilevel decision procedure

(collaboration procedure in Section III.E) has a tolerable

impact in the overhead of our algorithm. Finally, we conclude

that G2 was achieved, since our algorithm was analyzed for

the purpose of evaluating its overhead in terms of the

consumption of computing, communication and energy

resources of the WSAN.

Experiment E6 was conducted to answer Q6. It consisted

of evaluating the SRT metric while varying the number of

SENs. We used the same scenario and variations of

experiment E3. In addition, it was assumed that in all periods

of the monitoring cycle phase, sites with the presence of

damage were found, the most demanding scenario in terms of

WSAN resource consumption. Fig. 4 shows results for SRT.

For patterns P2 and P11 the SRT was, respectively, 1.091s ±

0.007s and 1.087s ± 0.012s. Because all the values of the SRT

metric are within the confidence interval of each other, we can

conclude that there was no significant change in SRT when

varying the number of nodes in the WSAN. This constant

value is explained by two factors: (i) the 1-hop distance from

each node to the SKN and ATN, i.e. all the WSAN nodes are

within the radio range of each other, avoiding the time spent

with routing; and (ii) the small amount of bytes transmitted in

each message by each SEN.

Fig. 2. Results of the WL metric (days) for E3

(a)

(b)

Fig. 3. (a) Results of ABR metric (Bytes) for E4. (b) Results of PL (%)
metric for E4

440

460

480

P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
0

3000

6000

P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

0.0%

50.0%

P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

To evaluate the gain of a decentralized approach (our

algorithm) compared to a centralized approach, we conducted

experiments to measure SRT also for a centralized version of

our algorithm, in which SENs collect data, extract the

frequency and amplitude and transmit them directly to the

SKN. The decentralized version achieves a shorter SRT. The

SRT achieved by the centralized approach was 4% and 115%

higher than the SRT achieved by the decentralized approach,

for scenarios P2 and P11, respectively. This difference is

related to the fact that the SKN needs to handle all the

received messages from all the SENs and perform the process

of damage detection for each SEN. There is also an additional

cost of time for the SKN to handle all the received messages,

because every message received by the radio must be

retransmitted via serial communication for a central computer,

where the data is stored in a database to be further processed.

In the decentralized approach, the SENs perform the

prediction process in parallel, and only wait for collaborating

over the result obtained by each node. Faster actions can be

very important to increase the safety of the operation and the

operational performance of the monitored structure.

Responding to Q6, the WSAN can respond promptly (1.091s),

triggering actuators, in different scenarios, with the number of

nodes smaller than 121. Finally, we conclude that goal G3 was

achieved.

C. Impact of non-assessed factors

In this section, we discuss the impact of factors that were

not assessed in the described experiments on our algorithm’s

performance. Relevant parameters that deserve discussion are

network density and faulty nodes.

Regarding the network density, it potentially affects the

performance of our algorithm as follows. In the current setting

for the experiments, the density was 1 SEN/m². Let us

consider the increase of such value. This variation will reduce

the sensing area dedicated to each SEN and, consequently,

more SENs will transmit data at the same time in the same

area. We can foresee two effects caused by such increase in

density. One effect regards an increase in the algorithm

accuracy. This positive impact happens because during the

execution of the consensus algorithm in one level, every node

will have more neighbors in its range for collaborating and the

consensus will be reached among more nodes. As a negative

effect, an increase in node density will increase the PL metric,

so more collisions of packets will occur. However, given that

nodes were reasonably spaced in the floor of a building during

their deployment, the first impact may increase before the

second impact. However, reaching higher values of node

density will cause the second impact to be stronger. As a

conclusion, this situation suggests that an optimum point in

node density exists, and it calls for further investigation in

future work. Therefore, when performing a deployment in a

building, the expert in the structure must consider the node

density in one same floor as a potential way of increasing the

accuracy of the algorithm, but this should be used wisely.

Regarding the faulty nodes, we need to consider the effect

of different types of faults since they affect the algorithm

differently. We consider a node as faulty due to factors such

as: (i) measurement errors due to sensor malfunctioning, (ii)

malicious behavior due to attacks, (iii) low battery level, (iv)

environmental influences or (v) electro-magnetic disturbances.

In our experiments, we considered only packet losses, a fault

that could occur because of some aforementioned factors as,

for instance, electro-magnetic disturbances. Such losses result

directly in the occurrence of false negatives because when a

packet is lost the destination SEN understands (incorrectly)

that the respective decision was ‘False’. However, some faults,

such as errors due to sensor malfunctioning may also

transform the local decision of a node into true when it should

be false, thus increasing false positives. Possible solutions for

dealing with all those factors are as follows. Increasing node

density in the same area; eliminating the environmental

influence by using filters during data collection and

processing; repeating the broadcast of decisions several times

to increase the probability of delivering messages to all nodes.

It is important to mention that we are discussing the loss

of messages carrying decisions as the most important case.

However, we can consider the case in which synchronization

messages are lost or delayed leading to measurements being

taken not at the same time. In this case, some nodes will not

partake in the monitoring cycle. Their decision messages will

be consequently delayed or never be sent. Therefore, this case

may increase false positives, as previously discussed. The

global agreement will not take more or less time to be reached,

because of how our consensus algorithm was designed: based

on a timeout, so that it has a fixed maximum time for reaching

the consensus. Therefore, our consensus algorithm will not

wait for delayed nodes or messages. Such messages will be

dropped and the consensus will happen without such

decisions.

It is also worth mentioning that the monitoring cycles of

our algorithm should never overlap. The system response time

(duration of a monitoring cycle) is in the order of seconds, as

evaluated in the experiments. Therefore, the application expert

should schedule the start of monitoring cycles with intervals

higher than this response time, i.e. at every minute, hour or

higher. Using this rule, and because the consensus has a fixed

maximum time for being achieved, messages for scheduling

the next monitoring cycle will never arrive while the system

did not reach the consensus of the previous monitoring cycle.

VII. CONCLUSIONS

This work presented a decentralized algorithm for

detecting damage in structures by using a WSAN. Overall, the

use of the information fusion techniques presented in our work

reduced the transmissions of data messages. Moreover, results

showed that it is possible to detect a single position of damage

using our algorithm in a case where damage on a structure

makes its frequencies and amplitudes shift. The information

fusion techniques helped to reduce data and, consequently,

allowed a faster and less energy consumptive information

exchange among WSAN nodes. False positive and false

Fig. 4. Results of the SRT metric for experiment E6

0.8
1.4
2.0
2.6

P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

SRT (s) SRTc (s)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

negative avoidance are some of the main reasons to stimulate

such collaboration mechanisms among the nodes in our

algorithm. In future works, we intend to explore the

cooperative information fusion along with data from different

kinds of sensors, such as strain gauges. Another future

direction is to investigate the existence of an optimal point

where data reduction and information fusion should be applied

in our assessment, relating in a trade-off the reduction in

overhead and the loss of accuracy.

REFERENCES

[1] I. Akyildiz, I. Kasimoglu, “Wireless sensor and actor networks:

Research challenges,” Ad Hoc Networks, vol. 2, no. 4, pp. 351-367, Oct.

2004.

[2] E. Nakamura, A. Loureiro, A. Frery, “Information fusion for wireless

sensor networks: Methods, models, and classifications,” ACM Comput.

Surv., vol. 39, no. 3, pp. 9/1-9/55, Sep. 2007.

[3] Y. Gao, B. Spencer Jr, M. Ruiz-Sandoval, “Distributed computing

strategy for structural health monitoring,” J. Struct. Control Health

Monit., vol. 13, no. 1, pp. 488-507, Jan./Feb. 2006.

[4] G. Hackmann, F. Sun, N. Castaneda, C. Lu, S. Dyke, “A holistic

approach to decentralized structural damage localization using wireless

sensor networks,” Computer Communications, vol. 36, no. 1, pp. 29-41,

Dec. 2012.

[5] I. Santos, L. Pirmez, E. Lemos, F. Delicato, L. Pinto, J. Souza, A.

Zomaya, “A localized algorithm for Structural Health Monitoring using

wireless sensor networks,” Information Fusion, vol. 15, pp. 114-129,

Jan. 2014.

[6] D. Reddy, S. Swarnamani, “Application of the FRF curvature energy

damage detection method to plate like structures,” World Journal of

modeling and simulation, vol. 8, no. 2, pp. 147-153, May 2012.

[7] S. Meguerdichian, S. Slijepcevic, V. Karayan, M. Potkonjak, “Localized

algorithms in wireless ad-hoc networks: location discovery and sensor

exposure,” In Proc. MobiHoc, 2001, pp. 106-116.

[8] G. Huang, A. Zomaya, F. Delicato, P. Pires, “Long term and large scale

time synchronization in wireless sensor networks,” Computer

Communications, vol. 37, pp. 77-91, Jan. 2014.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, “System

architecture directions for networked sensors,” in Proc. ASPLOS'00,

2000, pp. 93-104.

[10] __. MICAz DataSheet. MEMSIC, USA. [Online]. Available:

http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datashe

et-t.pdf.

[11] R. Alberola, D. Pesch, “Avroraz: extending avrora with an ieee 802.15.4

compliant radio chip model,” in Proc. MSWiM '08, 2008, pp. 43-50.

[12] V. Basili, “Software Modeling and Measurement: The

Goal/Question/Metric Paradigm,” University of Maryland, College Park,

MD, Tech. Rep.,1992.

[13] R. Klempous, J. Nikodem, L. Radosz, N. Raus, “Byzantine Algorithms

in Wireless Sensors Network,” in Proc. ICIA, 2006, pp. 319–324.

[14] C. Long, Y. Li, Y. Li, “A Multi-Hop Routing Scheme Based on

Different Spatial Density of Nodes in WSNs,” J. Theoretical and

Applied Information Technology, vol. 46, no. 1, pp. 195-200, Dec. 2012.

[15] R. Giffinger, C. Fertner, H. Kramar, R. Kalasek, “Smart Cities: Ranking

of European Medium-Sized Cities,” Centre of Regional Science, Vienna

UT, Vienna, Austria, Tech. Rep., Oct. 2007.

[16] L. Schor, P. Sommer, R. Wattenhofer, “Towards a zero-configuration

wireless sensor network architecture for smart buildings,” In Proc.

SenSys09, 2009, pp. 31-36.

[17] F. Pentaris, J. Stonham, J. Makris, “A cost effective wireless structural

health monitoring network for buildings in earthquake zones,” Smart

Materials and Structures, vol. 23, no. 10, pp. 193-218, Oct. 2014.

[18] H. Oliveira, A. Boukerche, E. Nakamura, A. Loureiro, ”An efficient

directed localization recursion protocol for wireless sensor networks,”

IEEE Trans. Computers, vol. 58, no. 5, pp. 677-691, Dez. 2008, doi:

10.1109/TC.2008.221.

[19] D. Agarwal, N. Kishor, “A Fuzzy Inference-Based Fault Detection

Scheme Using Adaptive Thresholds for Health Monitoring of Offshore

Wind-Farms,” IEEE Sensors Journal, vol. 14, no. 11, pp. 3851–3861,

Nov. 2014.

[20] D. Moss, P. Levis, “BoX-MACs: Exploiting Physical and Link Layer

Boundaries in Low-Power Networking,” Computer Systems Laboratory,

Stanford University, USA, Tech. Rep., 2008.

Igor L. Santos received his Master degree

in 2013 from the Federal University of

Rio de Janeiro (UFRJ), where he is

currently pursuing a Doctorate degree in

Informatics. He is also a lecturer at UFRJ.

His research interests include Wireless

Sensor and Actuator Networks, Cloud

Computing, Information Fusion and

Structural Health Monitoring.

Luci Pirmez received her Ph.D. degree in

1996 from Federal University of Rio de

Janeiro (UFRJ), where she is a researcher

and professor of post-graduation courses

in computer science. Her research

interests include Wireless Sensor and

Actuator Networks, Network

Management and Information Security.

Luiz R. Carmo received his PhD in

Informatics from the Universite de

Toulouse III (LAAS/CNRS) in 1994. He

is a Senior Specialist at the National

Institute of Metrology Standardization and

Industrial Quality (INMETRO) and a

Researcher at the Federal University of

Rio de Janeiro (UFRJ). His research

interests are Information Security and Computer Networks.

Paulo F. Pires received his PhD degree in

2002 from Federal University of Rio de

Janeiro. He is an Associate Professor at

UFRJ and integrates the Center for

Distributed and High Performance

Computing at the University of Sydney.

His research interests are Ubiquitous

Computing, Model-driven Development

and Software Architecture.

Flávia C. Delicato received her PhD

degree in 2005 from Federal University of

Rio de Janeiro, where she is an associate

professor. Her research interests are

Wireless Sensor and Actuator Networks,

Middleware, Adaptive Systems and

Internet of Things (IoT). She is a CNPq

fellow level 1.

Samee U. Khan is an associate professor

of electrical and computer engineering at

North Dakota State University. His

research interests include cloud, grid, and

big data computing, wired and wireless

networks, smart grids. Khan has a PhD in

computer science from the University of

Texas, Arlington. He is a senior member

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

of IEEE. For more information, see: http://sameekhan.org/

Albert Y. Zomaya is the chair professor

of high-performance computing and

networking in the School of Information

Technologies at Sydney University. His

research interests are complex systems,

parallel and distributed computing, and

green computing. Zomaya has a PhD in

control engineering from Sheffield

University, UK. Zomaya is a Fellow of AAAS, IEEE, and IET

(UK).

