Energy-Efficient Computing using Agent-Based
Multi-Objective Dynamic Optimization

Alexandru-Adrian Tantar, Grégoire Danoy, Pascal Bouvry, Samee U. Khan

Abstract Nowadays distributed systems face a new challenge, almost nonexistent a
decade ago: energy-efficient computing. Due to the rising environmental and eco-
nomical concerns and with trends driving operational costs beyond the acquisi-
tion ones, green computing is of more actuality than never before. The aspects to
deal with, e.g. dynamic systems, stochastic models or time-dependent factors, call
nonetheless for paradigms combining the expertise of multiple research areas. An
agent-based dynamic multi-objective evolutionary algorithm relying on simulation
and anticipation mechanisms is presented in this chapter. A first aim consists in ad-
dressing several difficult energy-efficiency optimization issues, in a second phase,
different open questions being outlined for future research.

1 Introduction

High Performance Computing (HPC) evolved over the past three decades into in-
creasingly complex distributed models. After attaining Gigaflops and Teraflops
performance with Cray2 in 1986, respectively with Intel ASCI Red in 1997, the
Petaflops barrier was crossed in 2008 with the IBM Roadrunner system [31]. And
trends indicate that we should reach Exaflops in the next ten to fifteen years [15].
The shift towards decentralized paradigms raised nonetheless scalability, resilience
and, last but not least, energy-efficiency issues [8]. Disregarded or seen as an extra-
neous factor in the HPC’s beginnings, the carbon emissions footprint of data centers
escalated to levels comparable to those of highly-developed countries [21]. Esti-
mates place the energy consumption of an Exaflops scale system in the range of

Alexandru-Adrian Tantar, Grégoire Danoy, Pascal Bouvry
Faculty of Sciences, Technology and Communication, University of Luxembourg e-mail:
{alexandru.tantar, gregoire.danoy, pascal.bouvry}Q@uni.lu

Samee U. Khan
North Dakota State University e-mail: samee .khan@ndsu.edu

2 A. Tantar, G. Danoy, P. Bouvry, S. U. Khan

hundreds of megawatts. Thus, not counting the raising environmental concerns, the
trend inflicts important economical consequences. The scope of this chapter is there-
fore focused on this last aspect, i.e. minimizing energy consumption while deliver-
ing a high performance level, and addresses several difficult issues in the energy-
efficient dynamic and autonomous management of distributed computing resources.
The intricate interplay of factors shaping the problem calls nevertheless for solutions
at the crossing of, among others, distributed computing, scheduling and dynamic
optimization [16,26]. Answering part of these aspects, we propose an agent-based
dynamic evolutionary multi-objective approach dealing with the time-dependent dy-
namic and stochastic factors defining a distributed computing environment.

Without entering into details, a few key characteristics of large scale systems,
of interest for the aims of this chapter, are introduced hereafter. We first focus
on HPC core aspects, gradually extending the discussion to grid and cloud sys-
tems. Existing implementations rely on expensive institution-centered high-end
computers, clusters or grids, with a high degree of complexity [4, 9]. Moreover,
these resources may potentially be shared across administrative domains or multi-
ple geographically-distributed centers. Therefore, as main points, one has to deal
with complexity for performance, energy consumption and execution deadlines.
The DOE/NNSA/LANL (Los Alamos National Lab) 100 million US$ BladeCen-
ter Cluster, ranked first in Top500 in 2009, was wired through more than 10000
Infiniband and Gigabit Ethernet connections extending over almost 90 kms of fiber
optic cable [18]. The system was estimated to deliver, according to IBM, 444.94
Megaflops/watt, ranking seventh in Green500'. Over the same period, the first
Green500 system, a BladeCenter QS22 Cluster, delivered 536.24 Megaflops/watt.
We have therefore two ends, opposing energy and performance, where an improve-
ment in one of them leads to a degradation of the other. And the gap forcing energy
requirements and performance apart does not cease to extend with time. At one year
distance, in June 2010, the Oak Ridge National Laboratory’s Cray XT5-HE was
ranked first in TopS00 with 2.331 Petaflops of computational power and only 56th
in Green500 with 253.07 Megaflops/watt. At the same time, an ascending Flops per
Watt tendency can be identified. Under development at IBM and to start running at
the Lawrence Livermore National Laboratory (LLNL) in 2012, the Sequoia system,
designed to include 1.6 millions of power-processors providing a peak performance
of more than 20 Petaflops, will supposedly sustain 3000 Megaflops/watt for an input
power of 6 Megawatts [19].

Cloud computing, while still dealing with complexity and energy consumption
issues, brings into focus business and additional privacy constraints [1,28]. As an
outline, cloud computing can be described in terms of computational demand and
offer where entities (individuals, enterprises, etc.) negotiate and pay for access to
resources administered by a different entity that acts as provider. Here, demand-
ing parties may have diverging requirements or preferences, given in contractual
terms that stipulate data security, privacy or quality of service levels. Performance
metrics include in this case occupation of resources, users’ satisfaction or service

! http://www.green500.org

Agent-Based Energy-Efficient Dynamic Optimization 3

level agreement violations [29,30]. What is more, dynamic and risk-aware pricing
policies may apply where predictive models are used either in place or through in-
termediary brokers to assess the financial and computational impact of decisions
taken at different moments in time. Furthermore, legal enforcements may restrict
access to resources or data flow, e.g. data crossing borders or transferred to a differ-
ent resource provider. As common examples, one can refer to Amazon Web Service
or Google Apps Cloud Services.

Summarizing, various scenarios have to be dealt with in order to construct an
energy-efficient optimization paradigm for distributed computing systems that of-
fers scalability and resilience capabilities in an autonomous, transparent manner.
An ideal approach would have to cope with time evolving performance and cost
constraints while anticipating the long term effects of the decisions taken at specific
moments in time. National security, surveillance and defence applications for which
reaction time is critical impose performance as single and only criterion. Sharing
computational power among high-priority applications running inside such a sys-
tem may nonetheless require to make use of strategies which take into account not
only the current contextual state but also future possible evolutions. At the opposite
end, for the academic and public domains, reducing energy consumption may stand
as a main factor [6].

We propose a decentralized, agent-based, dynamic multi-objective anticipative
EA. The chapter identifies the main components one deals with in energy-efficient
autonomic computing and, through abstraction and conceptualization, advances the
idea of a generic application framework. Evolutionary Algorithms (EAs) represent a
natural option to consider given their capability of dealing with highly multi-modal
functions in both mono and multi-objective cases as well as their notorious suc-
cess for various applications [7, 13]. Furthermore, the adoption of an agent oriented
paradigm is clearly adapted to address the autonomous and decentralized manage-
ment of energy in distributed systems. As mentioned in [25], multi-agent systems
can be used as an approach to the construction of robust, flexible and extensible
systems and as a modeling approach. Also, autonomic computing and, therefore,
distributed systems management, is a “killer app” for multi-agent systems [11].

The remainder of this chapter is organized as follows. Related work is discussed
in Section 2, followed by a brief introduction to basic optimization notions in Sec-
tion 3 and a description of the model and concepts later used for experimentation in
Section 4. Dynamic energy-efficient optimization aspects are discussed in Section
5, followed by results in Section 6 and conclusions.

2 Related Work

In the literature, energy-efficient approaches for large-scale distributed systems
are typically divided into two classes: centralized and distributed. Centralized ap-
proaches [33] are historically the first ones, which allow close to optimum results
but imply scalability and fault-tolerance problems as soon as the number of nodes in-

4 A. Tantar, G. Danoy, P. Bouvry, S. U. Khan

creases. To answer those limitations, distributed approaches were introduced, which
in turn brought new challenges such as ensuring maintainability and global perfor-
mance.

In [23] Khargharia presented a holistic theoretical framework for autonomic
power and performance management exploiting different components (CPU, mem-
ory, network and disks) and their interactions. Their autonomic resource manage-
ment framework optimises the power/performance ratio at each level of the hierar-
chy using a mathematical approach for which simulation results on static and dy-
namic scenarios are provided. Similarly, Bennani et al. in [27] proposed a hierarchi-
cal approach to the data center resource allocation problem using global and local
controllers. It uses a prediction model based on mutliclass queuing network models
combined with a combinatorial search technique (i.e. the Beam search algorithm).
Berral et al. in [5] introduced another predictive model for power consumption and
performance for task scheduling based on a machine learning approach (i.e. linear
regression algorithm). In this approach, the learning algorithm permits to model data
for a given management policy whereas in the previous approaches it is used to learn
management policies.

Bio-inspired algorithms have also been investigated by Barbagallo et al. in [3]
who optimized energy in data centers using an autonomic architecture. However this
approach is limited to single-objective optimization. Another natural approach to
model autonomic power management is the multi-agent paradigm, as demonstrated
by Das et al. in [10], in which power and performance in a real data center setting
is managed by agents autonomously turning on/off servers. This approach also uses
reinforcement learning to adapt the agents’ management policies.

To summarize, it appears that various distributed approaches dedicated to en-
ergy optimization in large-scale distributed systems have already been investigated.
However these only considered standalone approaches, such as static mathematical
models, single-objective bio-inspired algorithm or prediction models. The contribu-
tion proposed in this chapter intends to combine and extend these through an an-
ticipative dynamic multi-objective evolutionary algorithm for agent-based energy-
efficient computing.

3 Optimization Introductory Notions

For an energy function F, defined over a decision space X and taking values in an
objective space Y, F : X — Y, one may consider the minycy F (x) minimization prob-
lem. With no restriction for the topics of this chapter, we can additionally assume
that F is nonlinear and that ¥ C R. If F is continuous and double differentiable, x™
is considered to be a local optimum point if the following relations stand:

2
8F:0 d°F

o g 0

Agent-Based Energy-Efficient Dynamic Optimization 5

No straightforward formulation can be given for dynamic functions. Different
classes can be designated here, with functions including time-evolving factors or
enclosing random variables, functions depending on past states, etc. For the general
case and assuming a minimization context, the goal is to identify a sequence of
solutions x(¢), i.e. solution x to be applied at the ¢ time moment, with ¢ € [ty, 7]
leading to the following:

tcnd
min F(x(1),1) dt
x(1) Jig
In a more explicit form, this implies providing a sequence of solutions which,

for the given time interval, minimize the cumulative objective function obtained by
integration (for discrete time intervals the problem can be formulated by summing
over all time moments). Assuming x(¢) to be the sequence that minimizes the above
relation, for a different sequence x*(r), with € [tg,¢"], the following stands:

tend tmd

min [F(x(t),r)dt<min [F(x>(r),7)dt
x(1) Jig x2(t) J1g

For the multi-objective case, F is extended to define a vector of objective func-
tions F: X — RK F(x) = [fi(x),...,fi(x)]. The set X C RY of all the feasible
solutions defines the decision space, while the function F' maps feasible solutions
into an objective space. In addition, the Pareto optimality concept is used, based on
partial order relations defined as follows.

Definition 1. Let v, w € R¥. We say that the vector v is less than w (v < p W), if vy <w;
forallie {1,...,k}. The relation <, is defined analogously.

Definition 2 (Dominance). A point y € X is dominated by x € X (x < y) if F(x) <),
F(y) and if Ji € {1,...,k} such that f;(x) < f;(y). Otherwise y is called non-
dominated by x.

Definition 3. A point x € X is called a Pareto point if there is no y € X which dom-
inates x. The set of all Pareto solutions forms the Pareto Set.

In the multi-objective case, by extension, a scalarization function, given in ex-
plicit or implicit form, e.g. weighted sum of the objective functions, preference or
expert based decisions, has to be used at each time step for selecting solutions out
of the approximate Pareto front. Note that due to the dynamic nature of the problem
one solution and only one has to be selected and applied per time step — this does
not represent an option. The modeled problem can occupy a single state at a given
time moment and no reset to a previous state can be done. In this case minimization
is considered over a vector of cumulative objective function realizations and can be
defined to obey Pareto optimality laws. In addition, the semantics of the minimiza-
tion operator may be subject to context, e.g. deviation from a specified target. As a
general model, the problem can be therefore stated as follows:

6 A. Tantar, G. Danoy, P. Bouvry, S. U. Khan

tend tsnd

/t Six(e),t)dt, ..., fiu(x(2),1) dt}

0 Iy

min{ ’mdfi(x(t),t) dt} = min{

x(1) UJro l<i<k X

Last but not least, if solutions are dependent, e.g. with x(¢) = H(x(¢ — ¢)), where
H(-) is an arbitrary function and ¢ < ¢, anticipation has to be considered. If only
the current context is regarded, a solution minimizing the function F at the moment
t is optimal, but this may not stand for the complete set of following solutions,
i.e. a suboptimal overall fitness is attained. The function F' must be consequently
optimized by taking simultaneously into account the complete set of solutions (over
time). A more detailed discussion is given in Section 5 also introducing algorithm
and simulation related notions like strategy or scenario [6].

4 An Anticipative Decentralized Oriented Dynamic
Multi-Objective Evolutionary Approach

A framework for an anticipative decentralized dynamic multi-objective evolutionary
optimization of energy has been designed for simulation purposes. Modeled using
the agent paradigm, an example of the instantiation of the framework is illustrated
in Fig. 1, with one agent assigned per computing node.

The General Scheduler assigns tasks to the different available nodes, i.e. in this
case through the corresponding Local Schedulers. In addition, each node is pro-
vided to enclose decision mechanisms capable of autonomously managing local
energy-efficiency with respect to the overall or partially observed states of the sys-
tem. Nodes are independently controlled through dynamic frequency and voltage
scaling, directly driven by local parameters such as local system load (SL), node
overhead (NO), idle time (IT) or current node state (CS), and by global indicators
which describe system load (SL), operation cost (OC) and energy vs performance
ratio (EvP). The scaling is also indirectly driven by the type and rate of loaded and
offloaded tasks exchanged among nodes. Note that although exclusive use of sim-
ulation is made in this work, the passage to a real-world environment would still
require having simulation mechanisms in order to be able to carry anticipation over
the future states of the system.

The next two subsections describe the computing environment in terms of tasks
attributes, e.g. life-time and states, followed by computing nodes properties. The
local scheduler agent is detailed in the last subsection.

Agent-Based Energy-Efficient Dynamic Optimization 7

General
Scheduler

o DFS, DVS DFS, DVS =
Sy [~ £ v
23 238
EZ |- - R §<
o o
S |sLITEvOC SLIT EvP OC L O
NO, CS NO, CS
2 DFS, DVS orsovs [2
ES- A 53
Q o Q o
€= g2
o f------ e -——— —— — 5
O [sLImEvOC SL,IT,Evh,OC| O
NO, CS NO, CS

Software I:I Computing +«— Agent Comm.
Agent Node

---+ System Comm.

Fig. 1: Example of a per node system instance.

4.1 Computing vs Communication Intensive Tasks

For a realistic modelling of the execution environment, the system is analyzed by
considering computing and communication intensive tasks. We mainly focus on
studying the behaviour of the simulated system under intense computational load
and in the presence of communication or memory oriented tasks. Different scenarios
can be thus envisaged where distinct policies apply, e.g. computing intensive tasks
being assigned to independent machines, or where clusters of jobs are dynamically
created in order to maximize occupancy and resource utilisation. As a side note, a
heterogeneous environment has been preferred to a system running tasks with both
computing and communication traits exclusively in order to study extreme situa-
tions. Finally, energy consumption is assessed by relying on load indicators with no
direct account for communication.

The specifications defining a task are given in either invariant form, fixed for the
entire lifetime of the task, or dynamic, subject to random variation at execution time.
The first category includes due time, i.e. the latest point in time by which the task
has to be completed, and an offloading flag. Migrating idle virtual machines to a
secondary server may be coherent with load-balancing policies while offloading an
application which depends on real-time processing or that requires access to security
critical databases is not desirable. The offloading flag therefore serves for marking
tasks which can not be offloaded once assigned to a specific resource. Estimations of
the required execution time, computational load and average network transfer time

8 A. Tantar, G. Danoy, P. Bouvry, S. U. Khan

submission - assigned N

14 .
active
reassigned |\

completed

Y

@

Fig. 2: Task life cycle — reassignments imply a transfer time overhead leading to
potential delay penalties.

Table 1: Power states (p-states) for the B: 3.2 GHz, 130W stock processor
Intel® Pentium®M processor (A) and p-state Frequency Voltage

Power

a .StE)CI;S'Z tGIf{Z 13OW P rocﬁ SSOT (Bé PO 3.2 GHz 145 V 130 Watts
with allerent Irequencies, voltage and gy 306GHz 1425V 122 Watts
approximate power requirement. P2 3.0 GHz 4 v 116 Watts
P3 2.8 GHz 1.375V 107 Watts

A Intel®Pentium®M P4 2.66 GHz 135 V 100 Watts
P5 2.6 GHz 1.325V 94 Watts

P-State Frequency Voltage Power P6 2.4 GHz 3 v 85 Walls
PO 1.6 GHz 1.484V 245 Watts P7 2.2 GHz 1.275V 77 Watts
P1 1.4 GHz 1420V 17 Watts P8 2.0 GHz 1.25 V 68 Watts
P2 1.2 GHz 1.276 V 13 Watts P9 1.8 GHz 1.175V 55 Watts
P3 1.0 GHz 1.164 V 10 Watts P10 1.7 GHz 115 V 50 Watts
P4 800 MHz 1.036 V 8 Watts P11 1.5 GHz 1.125V 42 Watts
P5 600 MHz 0.956 V 6 Watts P12 1.4 GHz 1.1V 38 Watts

fall in the second category. In addition, task completion and, if the case, transfer
percentage indicators can be observed at run-time. Please note that none of these
dynamic factors are seen as an a priori information, e.g. as for use with scheduling
algorithms, being available for the purpose of simulation only.

The complete life cycle of a task can be described by several different states. A
schematic representation is given in Fig. 2. After submission, the task is placed in
a passive state, waiting to be assigned. Active state is reached after all afferent data
is transferred to the target resource and processing starts. Subsequently, depending
on the nature of the task and the employed optimization strategy, multiple reassign-
ments may occur. Before migrating to a different resource, a task is placed back into
a passive state, subsequently moving to queued and transferring states. Note that all
transitions requiring to move a task from a prior passive state to an active one, im-
ply a network transfer time overhead. As a last aspect, the explicit failure of a node

Variation

Agent-Based Energy-Efficient Dynamic Optimization

A past state B C current pointintime D future state E
1 T
o endrgy vs performance
TR T 1 operation cost —&—
2 average load ---*--
0.8 | frequency
- voltage
‘ ‘ step | |
0.2 0.3 0.4 0.5 06 : 0.7 08 0.9 1
Execution Time anticipation window

Fig. 3: Example of voltage and frequency scaling for a single node — normalized
average values. A specified performance target (traced in the lower part of the figure)
and operation cost direct the dynamics of the node. Other factors like overall system
load or network traffic (not drawn here) may intervene.

leads to all assigned tasks to be reinitialised and queued back into the system, i.e.
any derived results or application states are considered erroneous.

4.2 Environment and System Nodes

The computational environment is defined over a collection of abstract nodes which
can scale to approximate the behavior of a single processing core or that of hierar-
chical resource, referred to as “Computing Node” in Fig. 1. As detailed hereafter,
we focus on the interaction connecting external factors, provided in a descriptive,
informative form, with state indexes, internal to nodes and imperative in nature. No
information is known at system level with respect to the functioning of the nodes,
assumed nonetheless autonomous and capable of transiting different performance
states. An example is given in Table 1, where, for the Intel®Pentium®M 24.5W
processor, the frequency and voltage associated to each state is given along with the
resulting power consumption [20]. For simulation and experimentation purposes we
also rely on a 3.2 GHz, 130W stock processor, not discussed in detail here. All
nodes are in addition subject to a system-wide synchronization, ensuring execution
context coherency over time-dependent factors.

For the purpose of this study we consider that nodes define interconnected single
processing units. Different techniques may apply at core level, including Dynamic
Frequency Scaling (DFS) and Dynamic Voltage Scaling (DVS) [14, 22]. Extrap-
olating to clusters, Dynamic Power Management (DPM) schemes can be imple-
mented or machines can be dynamically assigned to different states or roles, e.g.
communication front-ends, dispatching or storage machines. A graphical represen-
tation capturing the evolution of a single node over a one-day span, normalized as an
execution time varying from 0.0 to 1.0, is given in Fig. 3 (discussed in more detail

10 A. Tantar, G. Danoy, P. Bouvry, S. U. Khan

. N
/'

/ \
1 1
1 I
1 I
i i
1 I
i i
1 I
1 I
1 I
1]
1 I
i i
1 1
: Communication|
: |
i i
i i
1 I
1 I
1]
1 I
1 I
1

i

i

1

1

Perceive ————m——

Environment State
Goal State

{'Key
| State: O Functions:l:l Knowledge Base:@

Fig. 4: A conceptual basic view of a node’s architecture.

later in this section). Energy vs performance and operation cost identify the balance
to ensure between consumption and computational performance, respectively the
cost associated with the operation of the node. Low energy vs performance values
imply a request for minimizing consumption whereas values close to 1.0 demand
performance. Definite semantics can be formulated upon the incurred delay, emer-
gency level or load percentage, where high values lead to an increased performance
demand. Analogously, cost can be associated to direct financial indicators, e.g. vari-
ation expressed as a function of operational expenses. Alternative definitions may
relate to carbon dioxide emissions footprint, energy supply levels (low battery trans-
lating into high costs), or environmental temperature where, for example, thermal
sensors placed at different locations in a center room may limit execution from
entering into a hazardous functioning condition. For the herein case we consider
that both energy vs performance and operation cost terms are specified by an exter-
nal independent source with arbitrary associated (unknown) semantics. No explicit
dependency is assumed, i.e. energy vs performance and operation cost may vary
independently.

The fundamentals defining a node at an internal level, for this study, relate to
the different associated performance states, operating frequency, voltage and power
specifications. Energy consumption, for a given activity factor, input power and ef-
fective capacitance, denoted respectively by «, C, f and V, is considered to scale
linearly with frequency and to be quadratically proportional to voltage. An approx-
imation can be obtained by integrating over P ~ aCfV? (power dissipation) [24].

Agent-Based Energy-Efficient Dynamic Optimization 11

4.3 Local Scheduler

After the detailed description of the computing nodes provided in the previous sub-
section, we now describe the architecture of the local scheduler. A conceptual view
of its architecture is given in Fig. 4, based on a cognitive agent model. The goals
of a local scheduler are to minimize through local decisions the system’s energy
consumption and the overall delay.

To achieve these goals, the agent has a set of skills and a reasoning function.
Skills include dynamic voltage and frequency scaling (DVS, DFS) and tasks of-
floading capabilities. A fuzzy inference system implements the reasoning function.
A multi-objective evolutionary algorithm is used to evolve the weights of the fuzzy
system while relying on an anticipation mechanism (detailes provided in the follow-
ing). As an additional skill, tightly linked with the communication function, nodes
have the possibility to offload tasks to other local schedulers. To communicate with
other local scheduler agents, an agent relies on a set of communication protocols
(assumed transparent here and not further detailed). Through the perceive function,
the agent is aware of the environment state (i.e. the global system’s performance)
and of its local goals’ status. The following provides a detailed description of the
instantiation of the aforementioned local scheduler architecture.

As previously mentioned, a first effective energy-management skill consists in
dynamically scaling frequency and voltage [14,17]. A linear decrease in energy con-
sumption is attained by downscaling frequency, respectively quadratic by reducing
voltage. Nonetheless, while a load-dependent scaling would stand as a straightfor-
ward approach, no direct formulation is possible here due to the additional energy
vs performance and operation cost specifications. High load should result in a fre-
quency and voltage increase but this has also to obey performance and operation
constraints. Additional factors taken into account here define local and average sys-
tem load, node overhead, idle time and current state (active or sleeping).

A second skill consists in enforcing local and system wide loading and offloading
policies along with task assignment and distribution mechanisms [2]. The dynamics
driving the loading and offloading of tasks, in this case, have a direct impact on a
node’s load and on the balance of the system while indirectly affecting the context
from which scaling decision criteria are drawn. Energy-aware load-balancing tech-
niques have to be consequently defined, controlling not only the distribution of tasks
across resources but also the type of tasks assigned to or offloaded from nodes, e.g.
regrouping one computational intensive task with multiple communication oriented
ones on the same node. As an example, an Intel®Pentium®M processor operating
at full load in High Frequency Mode (HFM), PO state, is expected to drive energy
consumption at a higher level than three identical processors operating in Low Fre-
quency Mode (LFM), state P5, under an equivalent load.

Summarizing, we opted for a design where frequency and voltage scaling is
driven (1) in direct manner by taking into account the average load over a short
term period, idle time, energy vs performance and operation cost, and (2) indirectly
by controlling the type and rate of loaded or offloaded tasks. Furthermore, given
that a centralized approach would not stand the scaling requirements of a large dis-

12 A. Tantar, G. Danoy, P. Bouvry, S. U. Khan

tributed system, a by node driven paradigm has been preferred. The effective control
of the systems is conducted upon the emergent result of all nodes’ decisions where
each node incorporates an independent functioning logic. For the herein case all
nodes use a zero degree Takagi-Sugeno [32] fuzzy inference system composed of
41 disjunctive rules (13 rules for deciding when and how to increase voltage and
frequency, 16 rules for downscaling control and 12 rules for task loading and of-
floading conditions). An excerpt of these rules is given hereafter with the title of
example.

if energyVsPerfTarget is energy A operationCost is high then
decrease voltage and frequency by a large percentage

if energyVsPerfTarget is perf. A consumption is low A load is high then
increase voltage and frequency by a large percentage

if energyVsPerfTarget is energy N consumption is high then
offload a high number of tasks

if energyVsPerfTarget is perf. A\ load is low A sysLoad is high then
accept a large number of tasks to be loaded

if energyVsPerfTarget is balance N\ consumption is low then

accept a moderate number of tasks to be loaded

A brief functioning insight is offered hereafter by referring to the different sec-
tions of Fig. 3. The simulation starts from a LFM mode with a moderately high load
(section A of the graph). Despite the slight operation cost increase, it is straight-
forward to observe the raise in voltage and frequency, in correlation with energy
vs performance — note that scaling also depends on load. Analogously, for approx-
imately the same energy vs performance level (transition between section A and
section B) but for an increased operation cost and in spite of the load’s escalation,
voltage and frequency drop, given the steep ascension of the operation price. In the
following steps, with the sustained energy vs performance increase, scaling reacts to
raise voltage and frequency, also reflected by the load decline due to the completion
of a larger number of tasks.

5 Dynamic Energy-Efficient Optimization

This section provides a detailed description of the last skill of the local scheduler
agent, i.e. the dynamic multi-objective anticipative evolutionary algorithm. As de-
scribed in the previous sections, the simulation model is designed to capture the
dynamic nature of a real-life distributed environment. Tasks arrive at different mo-
ments in time, not known in advance, performance and cost parameters vary in-
dependently, load overhead may affect all performance factors, e.g. due to external
users accessing the system, etc. Therefore, an energy-efficient approach, in this case,
has to cope not only with instantaneous, static factors, but also needs to adapt over

Agent-Based Energy-Efficient Dynamic Optimization 13

time to a continuously changing environment and, what is more, to perturbations
induced by multiple stochastic sources. An additional aspect to consider is that dif-
ferent evolution paths are possible from any given point in time. Moreover, as load
overhead, operation cost and failure are all modeled in stochastic form, the system
can be defined as a random variable where, given an initial configuration, all possi-
ble realisations at the next step or over multiple steps have to be assessed. Having
taken into account all possible outcomes, a decision can be formulated with respect
to changes to perform in order to maintain the system in an optimal state (maximal
performance at lowest possible energy consumption). Nonetheless, as a complete
assessment of all possible realisations of the system is not feasible from a compu-
tational point of view, decisions have to be taken only upon a reduced number of
samples. Furthermore, as a multi-objective approach is adopted, with energy con-
sumption and delay as objectives to be minimized, solution selection and decision
problems have to be addressed. We therefore rely on concepts like scenario, strat-
egy and anticipation window [6], discussed in more detail in the following. Different
open questions arise and solutions to the afferent problems are subject to further re-
search — an outline of the main concepts and implications is given hereafter.

5.1 Strategies and Scenarios

The evolution of the distributed system as a whole is an emergent effect of all nodes’
transitions. As we desire to minimize energy consumption and delay, the control pa-
rameters of each node have to be dynamically modified at each step. We therefore
speak of decisions acting on frequency and voltage scaling, e.g. putting the node in
a higher state than the current one, or local energy vs performance variation. Deci-
sions can be formulated with respect to the factors defining the context of a node at
a given moment in time and the optimality of these decisions can be heuristically
assessed over their effective application life-time. The main difficulty is that a de-
cision taken at a specific moment #, although optimal with respect to the outcomes
induced over its effective processing time window, i.e. [t,7 4 p], may not be optimal
at long term. For a graphical illustration refer to Fig. 3. Otherwise stated, for a given
configuration 7y of the system to simulate at a given time ¢, and given two decision
d!, d?, e.g. performing transitions towards a lower, respectively upper power state,
the short term overall outcome of the first decision may be suboptimal with respect
to the second decision, i.e. [/ Fy(y)dt < [ITF ;2 (v)dt, whereas long term over-

all effects may prove to be exactly the opposite with f,H'l’ Fp (p)dt< ff”’ Fy (y)dt,
where st < It represent short and long term corresponding time window lengths.
Therefore, instead of relying on punctual decisions, long term strategies are used
as basis for constructing a dynamic approach capable of anticipating future con-
sequences of current decisions. A first problem to be addressed, once the strategy
concept developed, relates to the effective evaluation of these objects. For a sys-

tem following a predictable evolution, which can be simulated in exact manner, i.e.

14 A. Tantar, G. Danoy, P. Bouvry, S. U. Khan

with no stochastic factors, it is sufficient to carry the simulation over the specified
anticipation time interval.

At the opposite end, when stochastic sources are part of the model, for any given
number of processing steps, we can only approximate the most probable states or
the average state of the system. Therefore, for a set of different candidate strategies
and for a given configuration of the system at a specified moment in time, sam-
ples have to be drawn, termed hereafter as scenarios, and evaluated independently.
A realization of the system is thus obtained for each scenario, with respect to the
constraints and dynamics dictated by each strategy. For coherence and consistency,
strategies are evaluated over the same set of scenarios, the final outcome of each
strategy being expressed as the average energy consumption and delay.

Note that several questions arise, subject to further research, with respect to pro-
cessing and anticipation time windows, strategy evaluation procedures, etc. First,
we face two opposing directions. Long simulation times lead to an escalation of the
anticipation error — simulating stochastic factors over a long period of time poten-
tially leads to configurations which no longer follow or represent reality. One would
therefore want to limit the extent over which anticipation is carried. At the opposite
end, short anticipation windows may not capture correctly the effects of a current
decision over the future state(s) of the system. What is more, having a strategy eval-
uated as the average result of different scenarios may not always be consistent, e.g.
when clustered or sparse states are obtained as a result.

6 Experimentation and Results

In the remainder of this chapter we present several results, first by analyzing the
behaviour of the fuzzy system at a node level, subsequently moving to a system-
wide focused discussion.

A comparative view of energy consumption and overall delay is given in Fig. 5.
For fixed energy vs performance and operation cost values, constant over the en-
tire one-day simulation time, the corresponding energy consumption and delay are
respectively illustrated in Fig. 5a and Fig 5b. Note that, for illustration purposes,
axes are mirrored between the two figures. Each point, e.g. energy vs performance
and operation cost set at 0.3, respectively 0.5, represents the average value of 30
independent simulations. Different plateaus can be identified for energy consump-
tion and, correspondingly, for delay. A substantial energy minimization is obtained
for an operation cost above 0.6, i.e. the equivalent of stating that energy is an im-
portant asset, and performance levels below 0.3. Recalling the performance states
of Intel®Pentium®M, this is the equivalent of operating the processor in the P4,
PS5 power states. Moderate consumption is attained for performance levels between
0.3 and 0.8 (equivalent of P1, P2 and P3 states) when operation cost is superior
to 0.6. For all other cases, energy consumption raises to reflect either a high per-
formance demand (energy vs performance superior to 0.8, i.e. equivalent of PO for
Intel® Pentium®M) or a low operation cost which, in turn, allows a high voltage

Agent-Based Energy-Efficient Dynamic Optimization 15

and frequency to be maintained. The behaviour of the system with respect to ex-
treme values is also of interest, the following cases being possible:

e Jowest possible energy consumption at the highest operation cost (energy vs per-
formance and cost set at 0.0 respectively 1.0). The outcome of drastic frequency
and voltage downscaling, e.g. processor constantly operated in lower perfor-
mance states, close to or in LFM, is obvious and straightforward to anticipate:
energy consumption is at its lowest while delay is driven to a maximum.

e energy vs performance and operation cost both set to 0.0, i.e. knowing that the
price to pay for energy, for example, is highly affordable, minimize energy con-
sumption. A first remark to be made here is that operation cost constrains the
variation amount allowed for scaling. Nonetheless, as a second aspect, scaling
does also consider the load of a node. Therefore, as the system is executed at an
affordable cost or at no costs at all, we only have to cope with load. As a conse-
quence, this leads to a separation in two subclasses: 1) execution under high load
— the node is put in a high execution state due to the affordable cost but this in
turn drives energy consumption over a positive slope (case exposed in Fig. 5); 2)
low load — scaling only copes with load; minimal energy consumption is attained
for minimal load.

e maximal performance, knowing that operation cost is at its highest (energy vs
performance and cost both set to 1.0). As specifications demand performance,
with no regard for energy consumption, and given the high load, the node is
operated in HFM, state P0. This reflects symmetrically in consumption and delay
graphics (Fig. 5a and Fig. 5b).

e maximal performance with lowest operation cost (values set to 1.0, respectively
0.0). Scaling is performed by following energy vs performance and load indica-
tors. The system is hence driven to respond to load stress, where from the high
energy consumption illustrated in Fig. 5.

A less explicit aspect of the presented graphs is the influence of task schedul-
ing and load-balancing. The order and priority associated to tasks (at node level)
have a direct impact on delay whereas load-balancing (system level) can result in
perturbations of both energy consumption and delay. The assignment of highly com-
putational intensive tasks to low performance nodes may be a first source of delay.
Similarly, the exclusive use of a high power consumption node to run communica-
tion intensive tasks may not be optimal. As the purpose of this study is to analyse
the use of a dynamic optimization algorithm for distributed systems in the presence
of different stochastic sources, we consider a minimal definition for scheduling and
balancing policies. Furthermore, as a centralized approach does not fulfill the re-
quirements of a large scale distributed environment, e.g. where administration poli-
cies may have only a limited acting power across domains, we preferred enforcing
node-based balancing. Each node is thus responsible for deciding upon acceptance
rates, e.g. for loading tasks, bias between computational and communication inten-
sive tasks, as well as on offloading parameters. The process is controlled by a subset

16 A. Tantar, G. Danoy, P. Bouvry, S. U. Khan

220
200
180
160
140
120
100

80

Energy Consumption

0.5

0.6 06)
0.4 B Operation Cost

0.5
Energy vs Performance

(a) Energy Consumption

5.6e-05
5.5e-05
5.4e-05
5.3e-05
5.2e-05
5.1e-05

5e-05
4.9e-05

>

Overall Dela

0.1

0.6 07

Energy vs Performance

(b) Delay

Fig. 5: Energy consumption and delay for various energy vs performance and op-
eration cost levels. A high energy consumption reflects increased voltage and fre-
quency values which in turn lead to a reduced delay — pairwise points, axes mirrored
between 5a and 5b. Symmetrically, a reduced energy consumption translates to in-
creased delay levels.

Agent-Based Energy-Efficient Dynamic Optimization 17

of rules within the fuzzy inference system, taking into consideration local and sys-
tem load, energy vs performance and operation cost specifications. Subsequent to
loading, all tasks receive equal priorities, the amount of dispatched active process-
ing time varying in concordance with the specified computational load footprint.

The complete simulation environment, as described in the previous sections, re-
lies on a collection of autonomous nodes. These nodes although capable of adjust-
ing their state as dictated by the internal base of rules may not optimally scale to
all possible scenarios. Or, otherwise put, the weights associated to the rules may not
be optimal. A possible solution, as mentioned earlier in this chapter, consists in us-
ing an evolutionary algorithm to modify the firing weights of the rules dynamically.
Thus, for each node, besides the enclosed fuzzy inference system, a multi-objective
paralle]l NSGA-II [12] evolutionary algorithm is deployed. For each algorithm, indi-
viduals code the strategy to use for modifying rules’ weights as an array of real tran-
sition values (initialized in uniform random manner in [0, 1]). The fitness function
is expressed as the energy and delay average values obtained over three different in-
dependent scenarios through simulation and anticipation in a specified time frame.
A scenario is obtained as a simulation carried over a given length of time where
random and stochastic factors are seeded by a given initial value. This allows for
different strategies to be analyzed against an identical set of scenarios. Simulations
and anticipation are performed in parallel on remote nodes to speedup the process.
Please refer to Fig. 3 for an intuitive illustration of simulation and anticipation re-
lated notions.

Strategies are iteratively evolved by the algorithm having as performance mea-
sure the same anticipation mechanism, at the end of each iteration, weights being
exchanged between the nodes. At following steps the simulation carried inside each
node uses the updated weights hence maintaining context coherence. At every 15
iterations, for each node, out of the locally obtained front of solutions, a set of
weights, best approximating the currently specified energy vs performance and op-
eration cost constraints, is selected and made active inside the node. Having weights
set for all nodes a processing step is performed, the algorithm being restarted from
the new execution point. The duration of a processing step is set to approximately
30 minutes (the system being run under the direction of the inference system with
the determined weights) with an anticipation time of 6 hours.

Besides the difficulty of static multi-objective optimization, the resulting on-
line dynamic case demands, as previously described, selecting a solution out of the
Pareto set at fixed discrete time moments. The selected solution is used to advance
the system to a new state (processing step illustrated in Fig. 3). As the intervention
of a decision maker does not represent a feasible nor a practical solution, we propose
the use of an approach inspired from the interactive EMO context. The classic way
of handling the preferences of an user in the interactive evolutionary multi-objective
context is by means of an achievement scalarizing function, initially proposed by
Wierzbicki [34] and defined as follows:

d
0(z,2%,A,p) = max {%’(Zj —z?)} +p Y Aj(zj—2))
- =

j=1,....d

18 A. Tantar, G. Danoy, P. Bouvry, S. U. Khan

where,
o(-,-,-,-) is an application of Z into R;
z=(21,22,---,%j,---,24) is an objective function vector;

L=, ,z(])-, ...,29) is a reference point vector;

A= (M, A, ..., Aj,..., Ag) is a weighted vector;
P, is an arbitrary small positive number (0 < p < 1).

These functions have as basis Chebyshev definitions and have the role of pro-
jecting a given reference point z’ € R (feasible or infeasible solution) into the
optimal Pareto set. Note that through the achievement scalarizing functions the
multi-objective problem formulation together with the reference point coordinates
are incorporated in a mono-objective optimization model. The reference point for
the herein case is given by the coordinates of the ideal point and provides the lo-
calization of the focus region on the Pareto-optimal front, while the weights A;,
i € {l1,...,d} used in the scalarization process supply the localization of the Pareto
solutions of interest in the aforementioned region.

A graphical illustration of an example execution is given in Fig. 6 (partial view
of the nodes). All simulations have been carried inside Grid’5000? [9] using a paral-
lel decentralized parallel NSGA-II algorithm over an average number of 300 cores.
Note that energy vs performance and operation cost are identical for all nodes as an
expression of system-wide constraints. Nodes start from an idle state with no tasks
assigned, the first steps showing a massive offload towards the third and fourth de-
picted nodes. Once these nodes reach a high load level, tasks are accepted only
at low rates, resulting a first equilibrium point (time line from 0.1 to 0.15). As
frequency and voltage are simultaneously increased, in concordance with the de-
manded energy vs performance level, a load decrease is recorded (close to 0.2).
Next, the ascending trend of the operation cost with a peak at 0.35, leads to lower
performance states for most of the nodes, where from the escalation of node load
indicators. The remaining time frame follows similar dynamics.

7 Conclusions

A general agent-based paradigm relying on fuzzy inference enabled nodes and a
multi-objective evolutionary algorithm has been presented in this chapter, outlining
several key points and open questions. The results provided by the algorithm show
that it is possible to cope with a highly stochastic and dynamic environment. Nodes
adapt not only to load specifications but also follow arbitrary energy vs performance
and operation cost constraints. A large number of extensions are possible where
concrete cases are analyzed independently, e.g. as for thermal-aware systems or as
with market rules driven environments. Additional insight has to be gained with

2 https://www.grid5000.fr

Agent-Based Energy-Efficient Dynamic Optimization 19
1 LI — T T — If C/i(ri;/\
/ T et .- énérgy vs performance
0.8 _IlOdf?,l // T operamst R
s ; - ~ e _—average load -
% 06 \\\\\\ /// frequency 7
& 04p/ — voltage 1
8
02 M i
0 i I I L
0 0.2 0.4 0.6 0.8 1
11— T T T P ————
node2 " energy.vs-performance. -
08 | < " operation cost “——
S . ~— ...~ _—average load -
2 0.6 e = - frequency T
& 04R — voltage —— |
>
02 4
0 L — I
0 0.2 0.4 0.6 0.8 1
1 od T T T p,,!f,,,,,_ C//
noae4 - energy-vs-perfor Ce
0.8 S opqraﬁ%ﬂsﬁ :
S o6l . / ~_ __—average load -+
s e T~ e frequency
& 04 — voltage ——
> s
02 f
O ; 1 1 1 1
0 0.2 0.4 0.6 0.8 1
1 T - T T ||'1‘ o
e __.-~energy Vs perfor e
0.8 fnode 3 . operation cost ———"]
S L / S __—average load -~ ‘
2 0.6 e ~_ - frequency 7]
S 04 R T voltage ———
> |
02 - i
0 L L 1 1
0 0.2 0.4 0.6 0.8 1

Execution Time

Fig. 6: Dynamic evolution of different fuzzy-enabled nodes (subset of the setup). For
each node and for each processing step, weights are optimized by a dedicated, per-
node multi-objective dynamic EA. Depending on the specific context, e.g. load, op-
eration cost and energy vs performance levels, each node adapts its frequency, volt-
age and the acceptance or the offloading rates in order to assure an energy-efficient
execution (outcome effects of varying exchange rates visible near 0.6). Please note

that scenarios are determined by the operation cost, energy vs performance
task arrival patterns, being generated and analyzed at execution time.

regard to how to exploit anticipation in an efficient, effective manner, as we

and the

11 as on

how to select a strategy out of a given set of points, e.g. potentially using decision-

making derived techniques.

20

A. Tantar, G. Danoy, P. Bouvry, S. U. Khan

References

10.

11.

12.

13.

14.

15.

16.

. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Pat-

terson, D.A., Rabkin, A., Stoica, 1., Zaharia, M.: Above the clouds: A berkeley view of cloud
computing. Tech. Rep. UCB/EECS-2009-28, EECS Department, University of California,
Berkeley (2009)

Aydi, H., Mejia-Alvarez, P., Mossé, D., Melhem, R.: Dynamic and aggressive scheduling tech-
niques for power-aware real-time systems. In: Proceedings of the 22nd IEEE Real-Time Sys-
tems Symposium, RTSS *01, pp. 95—. IEEE Computer Society, Washington, DC, USA (2001)
Barbagallo, D., Di Nitto, E., Dubois, D.J., Mirandola, R.: A bio-inspired algorithm for en-
ergy optimization in a self-organizing data center. In: Proceedings of the First international
conference on Self-organizing architectures, SOAR’09, pp. 127-151. Springer-Verlag, Berlin,
Heidelberg (2010)

Basney, J., Welch, V., Wilkins-Diehr, N.: Teragrid science gateway AAAA model: implemen-
tation and lessons learned. In: Proceedings of the 2010 TeraGrid Conference, TG 10, pp.
2:1-2:6. ACM, New York, NY, USA (2010)

Berral, J.L., Goiri, L.n., Nou, R., Julia, F., Guitart, J., Gavalda, R., Torres, J.: Towards energy-
aware scheduling in data centers using machine learning. In: Proceedings of the 1st Interna-
tional Conference on Energy-Efficient Computing and Networking, e-Energy ’10, pp. 215-
224. ACM, New York, NY, USA (2010)

Bosman, P.A.N., Poutré, H.L.: Learning and anticipation in online dynamic optimization with
evolutionary algorithms: the stochastic case. In: GECCO, pp. 1165-1172 (2007)

Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publish-
ers, Norwell, MA, USA (2001)

. Brown, D.J., Reams, C.: Toward energy-efficient computing. Commun. ACM 53, 50-58

(2010)

Cappello, F., Caron, E., Dayde, M., Desprez, F., Jegou, Y., Primet, P., Jeannot, E., Lanteri, S.,
Leduc, J., Melab, N., Mornet, G., Namyst, R., Quetier, B., Richard, O.: Grid’5000: A Large
Scale and Highly Reconfigurable Grid Experimental Testbed. In: Proceedings of IEEE/ACM
International Workshop on Grid Computing (GRID’05), pp. 99-106. IEEE Computer Society,
Washington, DC, USA (2005)

Das, R., Kephart, J.O., Lefurgy, C., Tesauro, G., Levine, D.W., Chan, H.: Autonomic multi-
agent management of power and performance in data centers. In: Proceedings of the 7th
international joint conference on Autonomous agents and multiagent systems: industrial track,
AAMAS ’08, pp. 107-114. International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC (2008)

Das, R., Whalley, 1., Kephart, J.O.: Utility-based collaboration among autonomous agents for
resource allocation in data centers. In: Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, AAMAS ’06, pp. 1572-1579. ACM, New
York, NY, USA (2006)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algo-
rithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6, 182-197 (2002)

Eiben, A., Schut, M.: New ways to calibrate evolutionary algorithms. In: Advances in Meta-
heuristics for Hard Optimization, Natural Computing Series, chap. 8, pp. 153—177. Springer
(2008)

Flautner, K., Reinhardt, S., Mudge, T.: Automatic performance setting for dynamic voltage
scaling. In: Proceedings of the 7th annual international conference on Mobile computing and
networking, MobiCom *01, pp. 260-271. ACM, New York, NY, USA (2001)

Gropp, W.: Mpi at exascale: Challenges for data structures and algorithms. Lecture Notes in
Computer Science 5759, 3-642 (2009)

Hatzakis, 1., Wallace, D.: Dynamic multi-objective optimization with evolutionary algorithms:
a forward-looking approach. In: Proceedings of the 8th annual conference on Genetic and
evolutionary computation, GECCO ’06, pp. 1201-1208. ACM, New York, NY, USA (2006)

Agent-Based Energy-Efficient Dynamic Optimization 21

17.

18.
19.
20.

21.
22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Herbert, S., Marculescu, D.: Analysis of dynamic voltage/frequency scaling in chip-
multiprocessors. In: Proceedings of the 2007 international symposium on Low power elec-
tronics and design, ISLPED °07, pp. 38—43. ACM, New York, NY, USA (2007)

IBM: Fact sheet & background: Roadrunner smashes the petaflop barrier (2008)

IBM: 20 petaflop sequoia supercomputer (2009)

Intel: Enhanced Intel Speedstep Technology for the Intel Pentium M Processor, Intel White
Paper (2004)

Kaplan, J., Forrest, W., Kindler, N.: Revolutionizing data center energy efficiency (2009)
Kaufmann, R.K.: The mechanisms for autonomous energy efficiency increases: A cointegra-
tion analysis of the us energy/gdp ratio. The Energy Journal 25(1), 63—-86 (2004)

Khargharia, B., Hariri, S., Yousif, M.S.: Autonomic power and performance management for
computing systems. Cluster Computing 11, 167-181 (2008)

Le Sueur, E., Heiser, G.: Dynamic voltage and frequency scaling: The laws of diminishing
returns. In: Proceedings of the 2010 Workshop on Power Aware Computing and Systems
(HotPower’10). Vancouver, Canada (2010)

Mcarthur, S.D.J., Davidson, E.M., Catterson, V.M., Dimeas, A.L., Hatziargyriou, N.D., Ponci,
F., Funabashi, T.: Multi-Agent Systems for Power Engineering Applications - Part I: Concepts,
Approaches, and Technical Challenges. Power Systems, IEEE Transactions on 22(4), 1743—
1752 (2007)

Mehnen, J., Wagner, T., Rudolph, G.: Evolutionary optimization of dynamic multiobjective
functions. Tech. rep. (2006)

N. Bennani, M., A. Menasce, D.: Resource allocation for autonomic data centers using analytic
performance models. In: Proceedings of the Second International Conference on Automatic
Computing, pp. 229-240. IEEE Computer Society, Washington, DC, USA (2005)

Parkhill, D.F.: The challenge of the computer utility. Addison-Wesley Pub. Co. Reading,
Mass., (1966)

Stantchev, V.: Performance evaluation of cloud computing offerings. In: Proceedings of the
2009 Third International Conference on Advanced Engineering Computing and Applications
in Sciences, ADVCOMP ’09, pp. 187-192. IEEE Computer Society, Washington, DC, USA
(2009)

Stantchev, V., Schrpfer, C.: Negotiating and enforcing qos and slas in grid and cloud comput-
ing. In: N. Abdennadher, D. Petcu (eds.) Advances in Grid and Pervasive Computing, Lecture
Notes in Computer Science, vol. 5529, pp. 25-35. Springer Berlin / Heidelberg (2009)
Sterling, T., Messina, P., Smith, P.H.: Enabling technologies for petaflops computing. MIT
Press, Cambridge, MA, USA (1995)

Takagi, T., Sugeno, M.: Fuzzy Identification of Systems and Its Applications to Modeling and
Control. IEEE Transactions on Systems, Man, and Cybernetics 15(1), 116-132 (1985)
White, R., Abels, T.: Energy resource management in the virtual data center. In: Proceed-
ings of the International Symposium on Electronics and the Environment, pp. 112-116. IEEE
Computer Society, Washington, DC, USA (2004)

Wierzbicki, A.: The use of reference objectives in multiobjective optimization. Lecture Notes
in Economics and Mathematical Systems 177, 468—486 (1980)

