Online Inter-Datacenter Service Migrations

Nikos Tziritas, Samee U. Khan, Senior Member, IEEE, Thanasis Loukopoulos, Spyros Lalis, Cheng-Zhong Xu, Senior Member, IEEE, Keqin Li, Fellow, IEEE, Albert Y. Zomaya, Fellow, IEEE

Abstract— Service migration between datacenters can reduce the network overhead within a cloud infrastructure; thereby, also improving the quality of service for the clients. Most of the algorithms in the literature assume that the client access pattern remains stable for a sufficiently long period so as to amortize such migrations. However, if such an assumption does not hold, these algorithms can take arbitrarily poor migration decisions that can substantially degrade system performance. In this paper, we approach the issue of performing service migrations for an unknown and dynamically changing client access pattern. We propose an online algorithm that minimizes the inter-datacenter network, taking into account the network load of migrating a service between two datacenters, as well as the fact that the client request pattern may change "quickly", before such a migration is amortized. We provide a rigorous mathematical proof showing that the algorithm is 3.8-competitive for a cloud network structured as a tree of multiple datacenters. We briefly discuss how the algorithm can be modified to work on general graph networks with an \(O(\log|V|) \) probabilistic approximation of the optimal algorithm. Finally, we present an experimental evaluation of the algorithm based on extensive simulations.

Index Terms— cloud computing, online service migrations, online virtual machine migrations, online algorithms

1 INTRODUCTION

ECONOMIES of scale, the pay-as-you-go model, and automated tools that facilitate the porting of legacy services to cloud environments [1] have made clouds an attractive solution for enterprises and organizations. The key technology for enabling service portability as well as elastic operation is virtualization. On the one hand, legacy programs can be executed on top of a virtual machine (VM) that can be configured according to client requirements. On the other hand, VMs (and the enterprise services that run on top of them) can migrate between datacenters, at runtime, to provide better response times and achieve a more efficient operation of the cloud environment with minimal disruptions to the service clients.

The ability to perform VM migrations and the overhead of such operations has received a lot of attention already from the early days of cloud computing [23]. Indeed, VM migration brings significant potential in achieving several optimizations, most notably: (a) VMs can be consolidated on fewer physical servers so that some servers can be powered off to save energy; (b) VMs can be moved from overloaded to underloaded servers in order to reduce the probability of violating service-level agreements with clients; and (c) VM migrations may help organize cloud resources to improve cloud performance [5]. [20]. All such optimizations lead to a bigger Return of Investment (ROI) for the cloud providers [5].

In this paper, we focus on performing VM migrations to minimize the network overhead within a given cloud infrastructure. For the sake of generality we use the term service migrations, rather than VM migrations, as one can imagine each enterprise service or service bundle running in a separate VM or a span of VMs. The service placement is tackled in a coarse-grained fashion, with all of the VMs comprising a service being migrated from one datacenter to another. In this paper we do not handle the intra-datacenter VM placement, which is complementary to our work. Even though we don’t consider the case where the VMs of a service may split between datacenters, such a case can be tackled by considering a composite aggregated VM as a candidate for migration. Most importantly, we tackle the problem in an online fashion, assuming an unpredictable, dynamically changing client access pattern, and considering the expected benefit of a service migration while also taking into account the network overhead for performing such an operation. The motivation behind service migrations is that both the total network overhead and the total delay experienced by the clients using the respective application decreases. The difficulty of the problem resides in the fact that in the generalized case, future client access patterns are unknown and cannot be predicted based on the history [6]. Consequently, poor decisions may be taken. Not only can one miss out on the beneficial migrations that would lead to better performance, but one may also decide on non-beneficial migrations, which must be reverted in the subsequent decisions; thereby, significantly degrading the system performance. Note that such an approach does not come in conflict with goals such as server consolidation and load balancing, since such goals are aligned with intra-datacenter service migrations but not with inter-datacenter service migrations.

The specific contributions of this paper are: (a) we
formulate the service migration problem, and propose an online algorithm that minimizes the inter-datacenter network overhead due to the forwarding of client requests to the datacenters hosting such services; (b) we provide a rigorous proof of the robustness of the proposed algorithm versus an optimal algorithm for the case when the input parameters are chosen by a cognizant adversary. The analysis reveals a 3.8-competitive ratio, when the underlying network topology is a tree; (c) we provide insights into how our algorithm can be extended to work on generalized graph networks; and (d) we present an experimental evaluation showing that our algorithm achieves a network load reduction of up to 80%, when compared with a static offline algorithm and up to 30%, when compared with the best known algorithm [4] pertaining to issue under discussion.

The remainder of his paper is organized as follows. Section 2 describes the related work. In Section 3, we introduce the system model and provide a formal mathematical problem formulation. Section 4 details our proposed algorithm for tree networks, while Section 5 briefly outlines how the algorithm can be adapted to work for generalized networks. Section 6 provides a detailed proof for the competitive ratio of the algorithm versus an optimal algorithm. In Section 7, we describe the experiments that were performed to evaluate the performance of the proposed algorithm. Finally, Section 8 concludes the paper.

2 RELATED WORK

A lot of works have studied the service or VM placement/migration problem in an offline fashion, under various objectives. Specifically, with “offline” we mean that the application characteristics are static. Ref. [16] minimizes the total network overhead by co-locating VMs that communicate heavily with each other. Ref. [5] proposes VM consolidation algorithms to reduce energy consumption. An interference aware migration strategy for VMs is proposed in [25]. An algorithm that minimizes the total network overhead by co-locating services with increased communication requirements is provided in [19]. A similar approach is described in [22] for wireless sensor networks. The minimization of the communication delay between VMs was tackled in [2], with the focus on reducing the interactions among various geographically distributed data centers.

Our work is closer to that of [2], [16], [19], and [22]. The main difference being that: (a) we tackle the problem in an online fashion and (b) we minimize the communications due to the forwarding of client requests to the respective services rather than due to any interdependencies between different services.

Many efforts have also been done to tackle the service or VM placements in an online fashion [24]. A distributed rate allocation algorithm is discussed in [9]. The bandwidth sharing problem is tackled in [10] and [11] as a Nash bargaining game. The authors propose allocation principles by defining a tunable base bandwidth for each VM. Ref. [3] presents an algorithm for solving the problem of energy- and performance-efficient VM consolidation. The VM consolidation problem is also tackled in [18] through online bin packing. In [13] and [26], the authors solve the same problem by using Kalman filter and Nash equilibrium techniques, respectively. An approach migrating agents in an online fashion under WSNs is discussed in [21]. Complementary to our work are [20], [14], [7] that propose load and power aware controllers. The target of [20] is to balance the load and maximize quality of service, while [7] and [14] to optimize power consumption. Ref. [17] studies the trade-off between communication overhead and delay overhead in the context of message aggregation in WSNs. The authors in [12] proposed an online algorithm for the joint problem of energy minimization and network congestion. Lastly, in [4], the authors solve the problem of service placement in virtual networks, with the objective of minimizing the total service access delay experienced by the clients. The authors prove that their proposed algorithm is $O(\log n)$-competitive, with μ being the ratio between maximal and minimal link capacity in the underlying network, and n being the number of datacenters in the system.

Our work fundamentally differs from [3], [12], [13], [18], and [26] in that such works are concerned with a different objective function. Our work differs from [21] as: the proposed algorithm in [21] is not scalable when the system exhibits frequent changes in load because it keeps historical information potentially for every access request. In contrast, our approach keeps the changes in an aggregated way. Ref. [17] is similar to our work in terms of its objective functions; however, it assumes a different system model (message aggregation). The work that is closest to ours is reported in [4] as it adopts a similar model and objective function. A key difference is that the algorithm presented there divides time into epochs, and resets the information kept about the traffic/load between services and datacenters at the end of each epoch. However, in our work we show (see proof of Theorem 1 in Section 6) that the competitive ratio crucially depends on the time instance where such a reset takes place, which advocates against an epoch-based approach.

3 SYSTEM MODEL AND PROBLEM DEFINITION

Let a cloud infrastructure be captured as a graph $G = (V, E)$, where each vertex $u \in V$ represents a datacenter n_u, and each edge $e = (u, v) \in E$ represents a communication link between n_u and n_v in the intra-cloud network. From now on we will use interchangeably the intra-cloud and inter-datacenter network.

Each communication link e is characterized by a possibly different data transfer overhead weight w_e. The data transfer overhead is computed by the average delay experienced when transferring data over that link. The aggregated network overhead for a path p between two datacenters n_u and n_v is denoted by $w_{uv} = \sum_{e \in \gamma_p} w_e$, and the minimum network overhead over all such paths is denoted by $W_{uv} = \min_{p} w_{uv}$. We assume that the network is direction-neutral ($W_{uv} = W_{vu}$) and that the network overhead of local data transfers is zero ($W_{uu} = 0$).
A datacenter can host several services; however, each service is hosted on a single datacenter. Each client connects to the cloud through an entry-point datacenter, e.g., the one closest to its physical location. Client requests are forwarded over the inter-datacenter network to the datacenter hosting the respective services, and responses are sent back to the clients in the same way. Without the loss of generality, we assume that a reply follows the same path that was used for the requests (in reverse direction). Client mobility is captured implicitly, through the dynamically changing client access pattern.

Let \(s_j \) be the \(j^{th} \) service of the system, hosted on datacenter \(n_c \). Moreover, let \(q_u \) be the set of clients that connect to the cloud through \(n_u \) and let \(\sigma_{uj}^t \) denote the data volume of the requests/replies sent/received by clients in \(q_u \) through \(n_u \) for service \(s_j \) at time \(t \). Such traffic must be forwarded between \(n_u \) and \(n_c \) (the host of \(s_j \)). It is noteworthy to mention that no such forwarding is required if \(s_j \) is hosted on \(n_u \). Fig. 1 depicts an example of the three different sets of clients \(q_u, q_m \) and \(q_f \) that connect to the cloud via datacenters \(n_u, n_m \) and \(n_c \) respectively. The clients interact with the service \(s_j \) hosted on \(n_c \) with the respective client volume being \(\sigma_{uj}^t, \sigma_{mj}^t \) and \(\sigma_{uj}^t \).

![Fig. 1. An example with datacenters and clients](image)

To deal with a dynamically changing client request/reply volume, a service \(s_j \) can be migrated from its current host \(n_u \) to another datacenter \(n_c \). Let \(M_{uj}(t) \) represent such a migration being performed at time \(t \). Moreover, let \(MC_i \) be the data transferred between the old and the new host due to this migration (including the VM state transfer). Finally, let \(h \) be a service hosting scheme/function, where \(h(j, t) = u \) means that \(s_j \) is hosted on \(n_u \) at time \(t \). Due to service migrations, it could be that \(h(j, t) \neq h(j, t') \). That is to say that a service may be hosted on various datacenters at different points in time. Let also \(\xi_j(t, t') \) reflect the time it takes for \(s_j \) to migrate from \(h(t, j) \) towards \(h(t', j) \), while \(\phi \) denote the maximum time it takes to migrate any service considering any pair of source/destination datacenters.

Based on the above, Eq. 1 captures the network overhead due to the client-datacenter interactions at time \(t \), as a function of the service hosting function \(h \). The extra network overhead due to the service migrations that take place at time \(t \) is given by Eq. (2). It must be noted that when \(h(t, j) = h(t + \phi, j) \), then actually \(\xi_j(t, t + \phi) = 0 \). Because division with zero is undefined, we demand that \(\xi_j(t, t + \phi) \geq \varepsilon \), with \(\varepsilon \) tending to zero. The above does not make any damage to Eq. (2), because when \(h(t, j) = h(t + \phi, j) \), then \(W_{h(t,j),h(t+\phi,j)} = 0 \). Therefore, in the above case \(\xi_j(t, t + \phi) \) can take on any value (except zero) without damaging Eq. (2). Note that Eq. (2) seems counter-intuitive because the service migration overhead is divided by time. However, the time is vanished when Eq. (2) is integrated as happens in Eq. (3). The total intra-cloud network overhead for a given time interval \([0, T]\) is equal to the sum of these two components over that interval, see Eq. (3).

\[
c_1^t(h) = \sum_{v_j} \sum_{v_u} \sigma_{uj}^t \times W_{u,h(t,j)} \quad (1)
\]

\[
c_2^t(h) = \sum_{v_j} MC_j \times [W_{h(t,j),h(t+\phi,j)}] \quad (2)
\]

\[
C(h) = \int_0^T c_1^t(h) dt + \int_0^T c_2^t(h) dt \quad (3)
\]

The optimization problem that we are addressing in this article can be stated as follows: Given a network \(G=(V, E) \), the network communication overhead between each datacenter pair \(W_{uv} \), a set of services \(s_j \) and a client traffic pattern \(\sigma_{uj}^t \) over the time interval \([0, T]\), find a service hosting function/scheme \(h \) for this interval such that Eq. (3) is minimized.

Note that if all links of the intra-cloud network have the same data transfer overhead, then the network overhead of path \(p \) between two datacenters can be replaced by its length \(w_{uv}^p = \text{len}(p) \). In this case, Eq. (3) is equal to the total network traffic for the interval \([0, T]\), and by solving the above problem one minimizes the intra-cloud network traffic for that interval.

4 NETWORK OVERHEAD MINIMIZATION ALGORITHM

In this section, we present an algorithm that decides, in an online fashion, whether (or not) to migrate a given service from its current host to another datacenter to minimize the total network overhead as per Eq. (3). We refer to the algorithm as the Network Overhead Minimization (NOM) algorithm. It is noteworthy to mention that the NOM is designed for tree-based networks. Because each datacenter is responsible for the service migration it hosts, there is no way of a conflict between service migrations.

A key parameter of NOM is the extent to which a datacenter knows the topology of the neighborhood, referred to as network awareness radius \(R \). Let \(R(n_u) \) be the set of datacenters that are at most \(R \) hops away from \(n_u \) including the datacenter itself. For each locally hosted service \(s_j \) and each datacenter \(n_m \in R(n_u) \), \(n_u \) keeps a load variable \(r_{mj} \). The load variable is used to record the client traffic for service \(s_j \) depending on the hop distance between \(n_u \) and \(n_m \) as follows: (a) if \(n_u \) is less than \(R \) hops away from \(n_u \) then \(r_{mj} \) records the client traffic for which \(n_u \) is the entry point; and (b) if \(n_u \) is exactly \(R \) hops away from \(n_u \) then \(r_{mj} \) records (as before) the client traffic for which \(n_u \) is the entry point. Moreover, the client traffic coming from entry points further away from \(n_u \) for which \(n_u \) acts as a router. The datacenter also keeps a load variable \(r_{mj} \) for recording the client traffic for the local service \(s_j \) for which \(n_u \) is the entry point.
It also is worth pointing out the two extreme cases of network awareness. On the one hand, \(R \) can be equal to the diameter of the network \(diam(G) \). In this case, for each local service \(s_j, n_u \) will have as many load variables as the number of datacenters plus 1 (for the local load variable). On the other hand, \(R \) can be 1, in which case the number of load variables for each local service is equal to the datacenter's degree \(deg(n_u) \) plus 1.

Fig. 2 reports an example where datacenter \(n_u \) hosts service \(s_j \) and where \(R = 2 \). For the purpose of illustration, let us focus on the time instance \(t \). The entry points for client traffic that concerns service \(s_j \) are datacenters \(n_u, n_v, n_t \) and \(n_p \) with the respective traffic volume being \(\sigma_{1,j} = 2 \), \(\sigma_{2,j} = 1 \), \(\sigma_{3,j} = 3 \) and \(\sigma_{4,j} = 4 \). Given that \(R(n_u) = \{n_v, n_p, n_t, n_d\} \), \(n_u \) has five load variables for \(s_j \): \(r_{u,v}, r_{u,p}, r_{u,t}, r_{u,d} \) and \(r_{u,j} \). Note that only \(r_{u,v} = 2, r_{u,k} = 1, r_{u,j} = 7 \) are greater than zero. Moreover, \(r_{u,j} \) aggregates the client traffic coming from \(n_t \) and \(n_v \), which is routed via \(n_u \), even though \(n_v \) is not the entry point for any clients of \(s_j \).

![Load Variables](image)

Figure 2. An example of network awareness and load variables. The dashed line marks the awareness circle of datacenter \(n_u \).

Based on the aforementioned load variables, \(n_u \) computes the benefit of \(s_j \) being prospectively hosted on \(n_m \) versus the current hosting of \(s_j \) on \(n_u \), as per Eq. (4) and Eq. (5). First, the network overhead for the current placement of \(s_j \) on \(n_u \), as well as for the prospective case of \(s_j \) being hosted on each of the datacenters \(n_m \in R(n_u) \) is calculated using Eq. (4). Thereafter, for each such datacenter \(n_m \), the benefit of migrating \(s_j \) from \(n_u \) to \(n_m \) is calculated using Eq. (5), as the difference between the network overheads of the respective placements. Finally, \(n_u \) decides to migrate \(s_j \) to the datacenter that gives the largest benefit, provided this benefit is greater than a threshold (which we discuss in the subsequent text).

\[
\text{cost}_{jx} = \sum_{n \in R(n_u)} r_{vj} \cdot W_{xv} \quad (4)
\]

\[
B_{um,j} = \text{cost}_{ju} - \text{cost}_{jm} \quad (5)
\]

Checking Eq. (5) for each datacenter \(n_m \in R(n_u) \) can be time-consuming. To reduce the time-complexity of the algorithm, we employ the following technique. Initially, the algorithm calculates the benefit of migrating \(s_j \) only to 1-hop neighbors of \(n_m \), as if \(R \) were equal to 1. As will be shown in Section 6 (Theorem 2), at most one 1-hop neighbor, say \(n_m \), can have a positive benefit \(B_{um,j} \). If \(B_{um,j} \) is greater than the migration threshold (see next), then the calculation is repeated by considering only the datacenters that are one hop further away from \(n_m \). The iteration stops when: (a) no beneficial migration can be found for \(s_j \); or (b) \(n_m \) is \(R \) hops away from \(n_u \). The algorithm decides to migrate \(s_j \) to the last datacenter (if any) for which the benefit was greater than the threshold. The pseudocode of the NOM algorithm, is given in Fig. 3. Note that the NOM is distributed, and runs periodically at every datacenter.

![Pseudocode of the NOM algorithm](image)

Figure 3. Pseudocode of NOM for datacenter \(n_u \).

In addition to the aforementioned steps, NOM makes two important checks or actions. The first check (line 13 of the pseudocode) is to decide for a service migration only if Eq. (6) holds (if the benefit is at least twice the network overhead for actually performing the migration). The second check (line 18 of the pseudocode) is to reset the load variables when Eq. (7) holds (when the aggregate reaches the so-called reset threshold \(RT \)).

\[
B_{um,j} \geq W_{um} \times 2MC_j \quad (6)
\]

\[
\sum_{n_m \in R(n_u)} r_{mj} \geq RT_j \quad (7)
\]

The introduction of a migration threshold and the resetting of the load variables play a crucial role for the competitive ratio of the NOM, as we will discuss in Section 6. In particular, if the migration threshold is chosen too small the competitive ratio increases dramatically, which we capture in Theorem 3.

5 Adapting the NOM for Generalized Network Graphs

As mentioned previously, NOM is designed to work on tree networks. In this section, we detail an adaptation of the NOM that can also work in on generalized network graph structures.

First, we define the metric for the problem of minimizing the network overhead in general graphs as \((V, \rho) \). Specifically, \(V \) is the set of datacenters, while \(\rho(n_u, n_v) \) is the minimum network overhead for transferring one data unit between \(n_u \) and \(n_v \). We define the diameter of \(\rho \) as:

\[
\Delta = \max_{n_u, n_v \in V} \rho(n_u, n_v)
\]

Next, we find a distribution \(DS \) over a family of tree
metrics, TM, so as to \(a\)-probabilistically approximate our metric. When we say that metric \((V, \rho)\) is \(a\)-probabilistically approximated by \((DS, TM)\), then for every datacenter pair \((n_u, n_v)\), \(E_{\rho \in (DS, TM)}[\rho'(n_u, n_v)] \leq a \times \rho(n_u, n_v)\), must hold true. Note that \(E[\rho'(n_u, n_v)]\) is the expected value of \(\rho'(n_u, n_v)\). According to \([8]\), for any given metric \((V, \rho)\), one can find a \((DS', TM')\) that is the \(O(\log |V|)\) approximation of \(\rho\). Therefore, we can generate a tree \(T\) according to \((DS', TM')\), and solve the problem on \(T\), using NOM. For further information of how \(T\) can be generated, we refer the reader to \([8]\). As the last step, we map the produced solution onto the original graph.

In simple words, according to \([8]\) a tree \(T\) is constructed with each node belonging to \(G\) being a leaf in \(T\). The upper levels of \(T\) consist of clusters. For example, assume that \(n_1\) and \(n_2\) have parent the cluster \(c_1\), while \(n_3\) and \(n_4\) have parent the cluster \(c_2\). Then, \(c_1\) and \(c_2\) are cluster nodes consisted of \([n_1, n_2]\) and \([n_3, n_4]\), respectively. It must be noted that \(c_1\) and \(c_2\) belong to the second level of \(T\). Assume now that \(c_3\) is a parent of \(c_1\) and \(c_2\) and belongs to the third level of \(T\). Therefore, \(c_3\) is a cluster consisting of \(c_1\) and \(c_2\), and thus consisting of \(n_1, n_2, n_3\) and \(n_4\). The weight of an edge between a node located at \(i^{th}\) and a node located at \((i+1)^{th}\) level equals \(2^i\). Therefore, the distance between \(n_1\) and \(c_3\) is \(\rho'(n_1, c_3) = 2^2 - 2\), while the distance between \(n_1\) and \(n_4\) is \(\rho'(n_1, n_4) = 2(2^2)\).

After constructing \(T\) we run NOM on that tree and get a solution consisting of all of the service migrations. Then, the next step is to map the solution based on \(T\) onto a solution based on \(G\). There are two cases: (a) a service migrates (based on \(T\)) from a leaf node \(n_i\) towards a leaf node \(n_j\); (b) a service migrates (based on \(T\)) from a leaf node \(n_i\) towards a cluster node \(c_3\). We must note that there is no case of migrating a service between two clusters.

In (a) the migration is mapped onto \(G\) by migrating the respective service from \(n_i\) towards \(n_j\) following the shortest path (based on \(G\)) between \(n_i\) and \(n_j\). In (b) the migration is mapped onto \(G\) by migrating the respective service(s) from \(n_i\) towards a node \(n_m\) belonging in \(c_3\). Specifically, \(n_m\) must satisfy the following requirement: the amount of communication load between the respective service(s) and the node \(n_m\) is greater than or equal to any datacenter belonging in \(c_3\).

As discussed previously, we can generate a tree topology that \(O(\log |V|)\) probabilistically approximates a general-structured network. Therefore, we can apply NOM on that tree and result in a competitive ratio of 3.8 (see Theorem 1 below). The solution of NOM in \(T\) is modified such that any service is assigned on a leaf node of \(T\), at the expense of an approximation ratio of two. The above ratio is justified by the following: (i) \(T\) is structured as a tree, and (ii) when a service is (virtually) hosted by a cluster \(c_3\), it is assigned on the leaf with the highest communication load among leaves belonging in \(c_3\). According to the above, the communication load is strictly less than that of assigning the respective service on \(c_3\). Therefore, the competitive ratio remains constant. The above means that the resulted algorithm can \(O(\log |V|)\) probabilistically approximate the optimal algorithm for general structured networks.

6 Competitive Analysis

Competitive analysis is a method used to compare the output of an online algorithm (ALG) that is unaware of the future with the output of the offline optimal algorithm (OPT) that has the complete knowledge of the future. The input is chosen by a cognizant adversary, such that the competitive ratio between ALG and OPT is maximized. Given a set of sequences, \(S = \{\sigma_1, \sigma_2, \ldots\}\), of requests, the competitive ratio between ALG and OPT may be given as:

\[
\max_{\sigma \in S} \frac{\text{ALG}(\sigma)}{\text{OPT}(\sigma)}
\]

An algorithm is competitive if and only if its competitive ratio is bounded. Specifically, an algorithm is called \(\zeta\)-competitive if the following holds:

\[
\text{ALG}(\sigma) \leq \zeta \times \text{OPT}(\sigma), \forall \sigma \in S
\]

Therefore, we must devise an online algorithm such that \(\zeta\) is as small as possible.

6.1 The Competitive Ratio of the NOM

In this section, we prove that NOM is 3.8-competitive when the underlying network is structured as a tree. Because the network overhead incurred between datacenters and clients is specified by a constant, we can omit it from our proof. Specifically, the aforementioned overhead is independent of the decisions of OPT and NOM. For our analysis, we assume that there is only one service (called \(s\)) within the cloud. Such an assumption is necessary to find the worst-case bounds. Moreover, we also assume that \(r_{\text{sys}}(z, y)\) is the same as \(r_{\text{sys}}\) with the difference being that the former captures the load for a specific time interval \([z, y]\). Furthermore, we use the notation \(B_{\text{sys}}(z, y)\) to capture the migration benefit according to the time interval \([z, y]\). To keep our analysis tractable, we also assume that the awareness of the NOM is equal to the diameter of the network.

Below we provide a sketch of our proofs. Particularly, in Lemma 1 – Lemma 8, we assume that: (a) NOM and OPT are allowed to perform at most one migration and (b) when NOM performs a migration, the destination is the same as that of the OPT algorithm. Lemma 1 provides the intuition of why Eq. (7) is important to improve the competitive ratio of the NOM. In Lemma 2 – Lemma 6, we identify the competitive ratio, under the assumptions that load variable resets are disallowed. Lemma 7 and Lemma 8 identify the competitive ratio when the load variable resets are allowed. In Lemma 8 and Lemma 9, we prove that the assumptions (a) and (b) as stated above do not compromise the competitive ratio of NOM.

Lemma 1. The competitive ratio between NOM and OPT is unbounded, provided that NOM does not apply Eq. (7).

Proof. It suffices to show that there is an \(\sigma\) such that the ratio between NOM and OPT tends to become infinity. To proceed, we make the following assumptions:

- The life of our system ends at \(T\) time instance.
- The cloud consists of two datacenters \((n_s, n_{sv})\) with \(w_{sv} = 1\), and initially, \(s\) is located on \(n_s\).
- The OPT and NOM perform \(M_{\text{sys}}(z)\) and \(M_{\text{sys}}(y)\) migrations, respectively.
Consequently, we have that \(OPT(\sigma) = r_{uvj}(0, z) + r_{uj}(z, T) + MC_j\), and \(NOM(\sigma) = r_{uvj}(0, y) + r_{uj}(y, T) + MC_j\). Therefore, the following must also hold: (a) \(y > z\), due to optimality of OPT and (b) \(B_{uvw}(0, y) = r_{uvj}(0, y) - r_{uj}(0, y) > 2MC_j\), due to the first action/check of the NOM. The adversary can choose an \(\sigma\) such that \(r_{uvj}(0, y) = r_{uj}(0, y) + 2MC_j + \epsilon\). We also demand that the chosen \(\sigma\) meets the following requirements: (a) \(r_{uvj}(0, z)\) and \(r_{uj}(z, T)\) equal to zero, (b) \(r_{uvj}(0, y)\) equals a sufficiently large number (or with a slight abuse we can say that it tends to infinity) such that the ratio between \(MC_j\) and \(r_{uvj}(0, y)\) tends to zero, and (c) \(r_{uj}(y, T)\) equals to zero. Note that \(r_{uj}(y, T)\) is not bounded by any number (there is no mechanism preventing \(r_{uvj}(0, y)\) from being as large as possible), while OPT(\(\sigma\)) is a constant. Because \(r_{uvj}(0, y)\) is a component of NOM(\(\sigma\)), it entails that the latter is not bounded. Therefore, the competitive ratio is unbounded. □

It is noteworthy to mention that by applying the second check/action of the NOM, the load variables are reset to zero when \(RT_j\) is reached. Therefore, \(r_{uvj}(0, y)\) is bounded \(RT_j\) which in turn means that NOM(\(\sigma\)) is also bounded because all of its components are bounded. Subsequently, we show the consequences of not applying the second check/action of the NOM procedure. It is prudent to choose the value of \(RT_j\) to be greater than the double the network overhead of migrating \(s_j\) towards a 1-hop neighboring datacenter (\(RT_j > 2MC_j\)); otherwise, we compromise the performance of the NOM, as the load variables will be reset before being able to decide for a migration. We also must note that when resetting the load variables there is a special case of resetting a variable \(r_{uvj}\) while some \(B_{uvw}(0, y)\) is greater than zero. Below we show whether the competitive ratio is dependent on the above or otherwise.

Lemma 2. The competitive ratio between NOM and OPT is at least three, provided that NOM performs all of its checks/actions.

Proof. Assume that we have a network with at least two datacenters (\(n_a\) and \(n_b\)), with \(s_j\) being initially located on \(n_a\). If OPT decides to perform a migration, \(M_{uvw}(z)\), then the best case for OPT is burdened with the migration overhead equaling \(w_{uv} \times MC_j\). On the other hand, the adversary will choose an \(\sigma\) such that the NOM is burdened by at least \(w_{uv} \times 2MC_j + w_{uv} \times MC_j\). The first factor concerns the load that must be generated to satisfy the first check/action of NOM. The second factor represents the network overhead of migrating \(s_j\) from \(n_a\) to \(n_b\). Therefore, the ratio between NOM and OPT is three. □

Lemma 3. The competitive ratio between NOM and OPT becomes one, under the requirement that both do not perform any migration.

Proof. Because of the requirement that neither the NOM nor OPT perform migrations, it means that they are burdened with the same network overhead. Therefore, the competitive ratio is one. □

Lemma 4. The competitive ratio between NOM and OPT is \(2-\epsilon\), provided that (a) OPT performs one migration but NOM does not perform, (b) \(RT_j > 2MC_j\), and (c) the load variables are not reset.

Proof. We assume that the life of our system is \(T\), and the OPT performs \(M_{uvw}(z)\). The ideal case for the OPT is that only \(n_e\) generates load before time instance \(z\), while only \(n_e\) generates load after \(z\). In that way the OPT will pay only the network overhead of performing \(M_{uvw}(z)\). The adversary will choose an \(\sigma\) such that \(n_e\) generates \(2MC_j - 1\) during \([z, T]\). Note that for the case that only \(n_e\) generates load, \(n_e\) cannot generate more load than \(2MC_j - 1\). The above is because in that case NOM would migrate \(s_j\) at \(n_e\), which comes in contradiction due to the precondition that NOM is not allowed to perform migrations. Therefore, NOM is burdened with \(w_{uv} \times (2MC_j - 1)\).

![Figure 4. Location of additional datacenters](image-url)

Previously, we showed that OPT is not burdened with the load generated by \(n_e\) during \([z, T]\), while NOM is burdened with \(w_{uv}\) for each unit of load. Consequently, the adversary will find an \(\sigma\) such that \(n_e\) generates as much load as possible, provided that the ratio between NOM and OPT increases, while the preconditions are not violated. Therefore, we have to investigate the behavior of the ratio when additional datacenters (other than \(n_e\)) generate load, giving in that way the ability of \(n_e\) to generate load more than \(2MC_j - 1\). We proceed by assuming that \(n_e\) generates load equaling \(2MC_j\), and discern the cases where an additional datacenter \(n_e\) generates load of one unit: (a) \(n_d \equiv n_{uv}\) (b) \(n_d \equiv n_{uv}\) (c) \(n_d \equiv n_{uv}\) (d) \(n_d \equiv n_{uv}\) and (e) \(n_d \equiv n_{uv}\). The locations of the aforementioned datacenters are given in Figure 4.

We now discuss each of the above scenarios in detail. For the case (a), when OPT is burdened with extra \(w_{uv}\) overhead, NOM is not burdened with extra overhead. The above means that the ratio between NOM and OPT will decrease. Therefore, the adversary will not choose the above scenario. For the case (b), when OPT incurs extra \(w_{uv}\) overhead, NOM is burdened with extra \(w_{uv}\) overhead. Because the ratio lessens, the adversary will not choose such a scenario. It can be seen, that if case (c) happens, then \(n_{uv}\) will satisfy Eq. (6). Therefore, NOM will migrate \(s_j\) at \(n_{uv}\). The above comes in contradiction with the fact that NOM is not allowed to perform migrations. Case (d) matures if \(n_{uv}\) generates a load of one unit, then \(n_{uv}\) will satisfy Eq. (6), which contradicts the precondition (a) of Lemma 4. If case (e) does exist, then we have a contradiction because \(n_{uv}\) will satisfy Eq. (6).

Therefore, the adversary will not choose any \(\sigma\) that satisfies the above scenarios. We must also note that the adversary will also not choose any combination of them. For example assume that case (b) is combined with case (c), then the above scenario is feasible (no contradiction). However, the adversary will not choose such a combination, as the ratio decreases. As a result, if the adversary
tries to push \(n_d \) to generate a load more than \(2MC_j \), then either we have a violation of precondition (a) of Lemma 4 or the ratio decreases. Therefore, the ratio between NOM and OPT becomes \(2-\varepsilon \) (\(\varepsilon = 1/2MC \)). We must note that we do not consider any case that the load variables are reset due to the precondition (c) of Lemma 4. \(\square \)

Lemma 5. The competitive ratio between NOM and OPT is given by (5.7), provided that: (a) NOM performs all of its checks/actions, (b) OPT and NOM perform \(M_{uv}(z) \) and \(M_{uv}(y) \), respectively, (c) only \(n_v \) and \(n_d \) generate load within the cloud, and (d) the load variables are not reset.

Proof. Because only \(n_v \) and \(n_d \) generate load within the cloud, we result in the Eq. (5.1) and Eq. (5.2). Note that because OPT takes the optimal decision, it holds that \(y > z \).

In the following section, we discuss the values that are aforementioned load variables must take on, such that the ratio between the NOM and OPT be maximized.

\[
\text{OPT}(\sigma) = w_{uv}r_{uv}(0, z) + w_{vu}r_{uv}(y, T) + w_{uv}MC_j
\]

(5.1)

\[
\text{NOM}(\sigma) = w_{uv}r_{uv}(0, y) + w_{vu}r_{uv}(y, T) + w_{uv}MC_j
\]

(5.2)

First, the adversary will try to identify whether the ratio (between NOM and OPT) increases when the load variables of OPT are set to zero. We can see that the ratio increases when either \(r_{uv}(0, z) \) or \(r_{uv}(z, T) \) decreases. Therefore, we have that \(r_{uv}(0, z) = r_{uv}(z, T) = 0 \).

On the other hand, we also need to check the load variables of the NOM. Because \(y > z \), it holds that \(r_{uv}(y, T) < r_{uv}(z, T) \), which in turn means \(r_{uv}(y, T) = 0 \). Now it remains to be decided on the value of the last load variable \(r_{uv}(0, y) \). On a first look we expect that the adversary will choose \(r_{uv}(0, y) \) to be as large as possible. However, the variable \(r_{uv}(0, y) \) needs more investigation. Firstly, of all, because NOM will perform \(M_{uv}(y) \), it must hold that \(B_{uv}(0, y) \geq 2w_{uv}MC_j \). Note that \(B_{uv}(y) \) cannot be much greater than \(2w_{uv}MC_j \), because when NOM identifies that the above inequality is satisfied it will migrate \(s_z \) onto \(n_v \). According to the above, it holds that there is an \(\varepsilon \) such that \(B_{uv}(0, y) + \varepsilon = 2w_{uv}MC_j \), which is translated to Eq. (5.4) into Eq. (5.3). Note that because \(y > z \), it holds that \(r_{uv}(0, y) = r_{uv}(z, y) \). The adversary will choose \(r_{uv}(0, y) = 0 \), because otherwise the OPT must be burdened with the load measured in \(r_{uv}(z, y) \). Therefore, Eq. (5.3) can be rewritten as Eq. (5.4).

We observe that due to Eq. (5.4), \(r_{uv}(0, z) \) comes into play. The adversary will demand that \(r_{uv}(0, z) \) be as large as possible, because only NOM will be burdened with the load measured in \(r_{uv}(0, z) \). However, \(r_{uv}(0, z) \) cannot be arbitrarily large, because the load variables are reset when they reach \(RT \). Therefore, it holds that \(r_{uv}(0, y) + r_{uv}(0, z) \leq RT \). The adversary will choose the largest value for the above load variables which means that the above inequality becomes Eq. (5.5). We must note that the adversary will choose Eq. (5.5) to be satisfied, provided that NOM first check for a possible migration and then for resetting the load variables.

\[
w_{uv}r_{uv}(0, y) = 2w_{uv}MC_j + w_{vu}r_{uv}(0, y) + \varepsilon
\]

(5.3)

\[
w_{uv}r_{uv}(0, y) + r_{uv}(0, z) = RT_j
\]

(5.5)

\[
\text{OPT}(0, y) = (2w_{uv}MC_j + w_{uv}RT_j + \varepsilon)/2
\]

(5.6)

By solving Eq. (5.4) and Eq. (5.5), we obtain Eq. (5.6). By substituting all of the above into Eq. (5.1) and Eq. (5.2), we obtain the following competitive ratio.

\[
(4MC_j + RT_j + \varepsilon/w_{uv})/2MC_j
\]

(5.7)

We define \(\varepsilon \) as the network overhead incurred until the NOM identifies that there is a beneficial migration and successfully executes the migration. We expect that \(\varepsilon \) is much smaller than \(MC_j \). \(\square \)

Lemma 6. The competitive ratio between NOM and OPT is given by (5.7), provided that the conditions are the same as the conditions of Lemma 5, with the difference that all datacenters are able to generate load within the cloud.

Proof. It suffices to show that if datacenters other than \(n_v \) and \(n_d \) generate load, then the ratio between NOM and OPT lessens compared to that of Eq. (5.7). Notice that the maximum load (associated with \(s_j \)) that can be generated within the cloud equals \(RT_j \), irrespective of how many datacenters generate load within the cloud. In Eq. (5.7) we assumed that the total load within the cloud is \(RT_j \). The OPT is burdened with zero network overhead for the above load. On the other hand, NOM is burdened with zero network overhead for each unit of \(r_{uv}(0, y) \), while with \(w_{uv} \) network overhead for each unit of \(r_{uv}(0, y) \).

In the subsequent section, we examine the behavior of the ratio between NOM and OPT when another datacenter (other than \(n_v \) and \(n_d \)) generates load. We discuss the cases where the aforementioned datacenter (hereafter called \(n_h \)) is in the same location as: (a) \(n_v \) in Figure 4, (b) \(n_l \) in Figure 4, (c) \(n_h \) in Figure 4, and (d) \(n_m \) in Figure 4.

In terms of (a), for each unit of load of \(n_v \), NOM is burdened with \(w_{uv} \) extra network overhead, while OPT with \(w_{uv} + w_{vu} \) extra network overhead. We observe that the ratio decreases against that of Eq. (5.7).

Regarding (b), we need to adjust Eq. (5.1) and Eq. (5.2) according to load generated by a datacenter \(n_d \) that has the same location as \(n_v \) in Figure 4. Therefore, \(w_{uv}x_r(0, 0) + w_{uv}x_r(0, z) \) will be added into Eq. (5.1), while \(w_{vu}x_r(0, y) + w_{vu}x_r(y, T) \) into Eq. (5.2). When \(n_d \) is closer to \(n_v \) compared to \(n_v \), then the adversary will choose \(n_d \) to generate load after time instance \(z \) (i.e., \(r_{uv}(0, z) = 0 \)), so that the ratio between NOM and OPT is maximized. On the other extreme, if \(n_d \) is closer to \(n_v \), then the adversary will choose \(r_{uv}(z, T) = 0 \). If \(n_d \) is in the half of the distance between \(n_v \) and \(n_d \), then by choosing any of the above is equivalent for the competitive ratio. We must note that the adversary will choose \(r_{uv}(y, T) = 0 \), irrespective of the location of \(n_d \). The above is attributed to the fact that \(r_{uv}(y, T) < r_{uv}(z, T) \).

Note also that due to the aforementioned facts, it holds that \(r_{uv}(z, T) = r_{uv}(y, T) \).

First, we assume that \(n_d \) is closer to \(n_v \) compared to \(n_v \). According to the above, \(n_d \) can generate load during \([z, y]\). Consequently, the adversary will choose \(r_{uv}(0, z) = 0 \), and \(r_{uv}(y, T) = 0 \). Therefore, Eq. (5.1), Eq. (5.2), Eq. (5.4), and Eq.
hand, by choosing \(n_j \) being located in the half of the distance between \(n_i \) and \(n_j \) then the ratio is equivalent with Eq. (5.7’’). Therefore, the ratio between NOM and OPT lessens if the adversary demands from a datacenter like \(n_d \equiv n_j \) to generate load.

Regarding case (d), we observe that \(n_d \) is closer to \(n_i \) than \(n_i \). Due to the above, the adversary will demand from \(n_d \) to generate load after time instance \(z \). By applying the same reasoning as previously, we result in Eq. (5.1’), Eq. (5.2’), Eq. (5.4’), and Eq. (5.5’). By combining Eq. (5.4’) and Eq. (5.5’), and solving as per \(r_j(0, y) \), we get the equation Eq. (5.6’’). To result in the previous equation we use the fact that \(w_{ud} = w_{uv} + w_{vd} \) (see Fig. 4 for \(n_d \equiv n_u \)). By plugging Eq. (5.6’’) into Eq. (5.2’), we result in the ratio between NOM and OPT, described by Eq. (5.7’’). We observe that Eq. (5.7’’) is smaller than Eq. (5.6), under the premise that \(r_d(z, y) > 0 \).

We showed in the preceding text, that when datacenters (other than \(n_i \) and \(n_j \)) generate load towards \(s_j \), then the ratio between NOM and OPT becomes smaller compared to Eq. (5.7). Therefore, the adversary will demand from datacenters (other than \(n_i \) and \(n_j \)) not to generate load. According to the above, the competitive ratio between NOM and OPT is captured by Eq. (5.7).

Lemma 7. The competitive ratio between NOM and OPT is given by either Eq. (5.7) or Eq. (7.8), provided that: (a) the NOM performs all of the checks/actions; (b) the OPT and NOM perform each at most one migration, respectively; (c) If NOM performs a migration, then it chooses the same destination with OPT; (d) The load variables are infinitely reset; and (e) \(RT_j \) is greater than \(2MC_j \).

Proof. Consider that \(s_j \) is initially located on \(n_i \). We discern three cases: (a) NOM and OPT do not perform migrations, (b) OPT performs \(M_{uvj}(z) \), while NOM does not perform any migration, and (c) OPT performs \(M_{uvj}(z) \), while NOM performs \(M_{uvj}(y) \). In terms of (a), the ratio between the NOM and OPT is always one (see Lemma 3). Therefore, case (a) does not depend on whether the load variables are reset or not. Regarding the case (b), we have two subcases: (b.i) the load variables are infinitely reset before OPT performs \(M_{uvj}(z) \). Consequently, (b.i) reduces to (a). The second subcase (b.ii) is that the load variables are reset after OPT performs \(M_{uvj}(z) \). Concerning case (c), we have three subcases to discuss: (c.i) The load variables are infinitely reset before the OPT performs \(M_{uvj}(z) \). We can see that (c.i) reduces to (a); (c.ii) The load variables are infinitely reset after the OPT performs \(M_{uvj}(z) \) and before NOM performs \(M_{uvj}(y) \). We also can observe that (c.ii) reduces to (b.iii); and (c.iii) The load variables are reset after both OPT and NOM perform their migrations. From the above we conclude that the ratio between NOM and OPT is not identified for the cases (b.ii) \(\equiv (c.ii) \) and (c.iii). Investigating (c.iii) further, we observe that after both
OPT and NOM perform their respective migrations, they will be burdened with the same network overhead. Therefore, the resets of the load variables can take place by having \(n_s \) to generate infinite load, without changing the ratio between them. The above situation is fully investigated by Lemma 5 and Lemma 6. Therefore, the largest ratio of the above situation is captured by Eq. (5.7). All that remains is to find the largest ratio for the case (b.ii), with the procedure of finding such a ratio being explained analytically in the below text. Moreover, in the subsequent text, we will also identify the datacenters that will be selected by the adversary to generate load such that the ratio between NOM and OPT be maximized. Because OPT performs \(M_{uv}(z) \), we conclude that \(n_s \) must generate load. We also need to examine whether the adversary will choose another datacenter (other than \(n_s \)) to generate load. Consequently, we assume that an extra datacenter (other than \(n_s \)) called \(n_d \) generates load. All possible cases of \(n_d \) are described below and depicted in Figure 4: (b.ii.1) \(n_d = n_{uv} \), (b.ii.2) \(n_d = n_s \), (b.ii.3) \(n_d = n_{uv} \), (b.ii.4) \(n_d = n_{uv} \), (b.ii.5) \(n_d = n_s \), and (b.ii.6) \(n_d = n_s \).

If (b.ii.1) happens, then only \(n_d \) can generate load to reset the load variables. However, because \(RT_j > 2MC_j \), it means that NOM will migrate \(s_j \) onto \(n_d \). The above contradicts the assumption that we took as (b) that NOM must not perform migrations. When (b.ii.2) takes place, then for each unit of load generated by \(n_s \), OPT is burdened with \(w_{uv} \), while NOM is burdened with \(w_{uv} \). Moreover, \(w_{uv} \) is greater than \(w_{uv} \) (see Figure 4). Therefore, the ratio between NOM and OPT decreases when \(n_d \) generates load.

In terms of (b.ii.3), (b.ii.4), and (b.ii.5), we observe that the extra datacenter is located in the direction that goes from \(n_s \) towards \(n_s \). Therefore, it must hold that \(r_{uv}(z, T) > r_{uv}(z, T) + r_{uv}(z, T) - 2MC_j \). Otherwise, NOM must perform a migration towards that direction, which results in a contradiction. Note that in the above cases, \(n_d \) does not generate load; therefore, it holds that \(r_{uv}(z, T) = 0 \). Because \(RT_j > 2MC_j \) (precondition (e)), the loads generated by \(n_d \) and \(n_d \) cannot be reset before the aggregate exceeds \(2MC_j \). According to Eq. (6), when both \(n_s \) and \(n_d \) generate load equaling \(2MC_j \), NOM will migrate \(s_j \) towards a datacenter across the path between \(n_s \) and \(n_s \), which results in a contradiction. Therefore, if we want to reach the threshold we must demand from \(n_s \) to generate always load.

If (b.ii.6) happens, then \(OPT(\sigma) = w_{uvr_{uv}}(0, z) + w_{uvr_{uv}}(z, T) + w_{uvr_{uv}}MC_j \), while \(NOM(\sigma) = w_{uvr_{uv}}(0, T) \). During \([0, z]\) both OPT and NOM produce the same network overhead. Therefore, the adversary will choose \(r_{uv}(0, z) = 0 \). During \([z, T]\), the adversary will choose only \(n_d \) to generate load (because OPT is not burdened with this load). However, in the above case, NOM will perform \(M_{uv}(y) \), which results in a contradiction. Therefore, during \([z, T]\) both \(n_s \) and \(n_d \) generate load such that the load variables be infinitely reset. According to the aforementioned cases, the network overheads produced by OPT(\(\sigma \)) and NOM(\(\sigma \)) are given below (with \(F \) denoting the number of resets performed):

\[
OPT(\sigma) = F \times w_{uvr_{uv}}(z, T) + w_{uvr_{uv}}MC_j \tag{7.1}
\]

\[
NOM(\sigma) = F \times w_{uvr_{uv}}(z, T)
\]

Because NOM must not perform any migration, we mandate that \(B_{uv}(0, y) < 2w_{uvr_{uv}}MC_j \). Note that the ratio between NOM and OPT increases as the load generated by \(n_s \) increases. As a result the ratio between NOM and OPT is maximized when \(B_{uv}(0, y) - \epsilon = 2w_{uvr_{uv}}MC_j \) with \(\epsilon \) tending to zero. Consequently, \(B_{uv}(0, y) \approx 2w_{uvr_{uv}}MC_j \). Combining the above with Eq. (4) and Eq. (5), we obtain Eq. (5.3). For resetting the load variables, we mandate that Eq. (7.4) be satisfied. By combining Eq. (7.3) and Eq. (7.4), and solving as per \(w_{uvr_{uv}}(z, T) \) and \(w_{uvr_{uv}}(z, T) \), we obtain Eq. (7.5) and Eq. (7.6), respectively.

\[
w_{uvr_{uv}}(z, T) = 2w_{uvr_{uv}}MC_j + w_{uvr_{uv}}(z, T) \tag{7.3}
\]

\[
r_{uv}(z, T) + r_{uv}(z, T) = RT_j \tag{7.4}
\]

\[
w_{uvr_{uv}}(z, T) = w_{uvr_{uv}}RT_j / 2 - w_{uvr_{uv}}MC_j \tag{7.5}
\]

\[
w_{uvr_{uv}}(z, T) = w_{uvr}_{uv}RT_j / 2 + w_{uvr}_{uv}MC_j \tag{7.6}
\]

By substituting Eq. (7.6) in Eq. (7.1) and Eq. (7.6) in Eq. (7.2), and eliminating the common factor \(w_{uvr_{uv}} \), we obtain the ratio (between NOM and OPT) described, as given by Eq. (7.7). The aforementioned ratio is maximized when \(F \) tends to infinity, as given in Eq. (7.8).

\[
F(\frac{RT_j}{2} + 2MC_j) / \left[F(\frac{RT_j}{2} - 2MC_j) + 2MC_j \right] \tag{7.7}
\]

\[
(\frac{RT_j}{2} + 2MC_j) / (\frac{RT_j}{2} - 2MC_j) \tag{7.8}
\]

Previously we examined the case where exactly two datacenters generate load. We concluded that the aforementioned datacenters are \(n_s \) and \(n_d \). Next, we investigate the case where extra datacenters (other than \(n_s \) and \(n_d \)) generate load. First of all, if the extra datacenters are located in the opposite direction (from \(n_s \) towards \(n_d \)), then OPT is burdened with more network overhead compared to that of NOM for each unit of load that comes from those datacenters. The above is because in case of NOM \(s_j \) is placed closer to the extra datacenters as compared to the case of OPT. On the other hand, if the aforementioned datacenters are located in the direction from \(n_s \) towards \(n_d \), then it must hold that \(r_{uv}(z, T) > r_{uv}(z, T) + r_{uv}(z, T) - 2MC_j \). In the above inequality, \(r_{uv}(z, T) \) represents the load generated by the extra datacenters. Given that \(r_{uv}(z, T) + r_{uv}(z, T) + r_{uv}(z, T) = RT_j \), the above inequality means that the load generated by \(n_s \) when only \(n_s \) and \(n_d \) generate load, it must be shared among the extra datacenters. However, we notice that OPT is burdened with zero load regarding the load generated by \(n_s \). Therefore, in case of extra datacenters, OPT will be burdened with the load generated by \(n_s \). The above means that the ratio between the NOM and OPT decreases. Consequently, under the preconditions of this lemma, the competitive ratio between the NOM and OPT is given by either Eq. (7.8) as captured in case (b.ii) or by Eq. (5.7) as described by case (c.iii).

Corollary 1. We assume the same preconditions of Lemma 7, with the difference being that in precondition (d) the number of resets are not infinite but finite. As a result of which, the competitive ratio is given by either Eq. (5.7) or Eq. (7.7), with the latter being strictly smaller than Eq. (7.8).

Lemma 8. NOM and OPT choose the same destination
when migrating a service.

Proof. Assume that OPT makes a decision to migrate \(s_i \) onto \(n_\text{opt} \) and NOM takes the decision to migrate \(s_i \) onto \(n_m \). Therefore, according to Eq. (6), \(n_\text{opt} \) must generate more load than \(n_m \). The above means that OPT did not take the optimal solution, which results in a contradiction. □

Lemma 9. The competitive ratio is given by either Eq. (5.7) or Eq. (7.8), and it does not depend on the number of migrations performed.

Proof. According to the previous lemmas and Corollary 1, we have that the competitive ratio of NOM is given by either Eq. (5.7) or Eq. (7.8). By incorporating a number of \(N \) migrations into the above equations, we can see that both the enumerators and denominators are multiplied by \(N \). □

Theorem 1. NOM is 3.8-competitive, provided that the underlying network is structured as a tree and the reset threshold is equal to that of 3.5MC.

Proof. According to Lemma 9, the competitive ratio between NOM and OPT is given by Eq. (5.7) or Eq. (7.8). Therefore, we must identify the domination between them. We can observe that when \(RT \) attains large values of the order of 10MC, it holds that Eq. (5.7) is greater than Eq. (7.8). On the other hand, when \(RT \) tends to be equal to that of 2MC, it holds that Eq. (7.8) is greater than Eq. (5.7). Therefore, we equate the above equations to find the value of \(RT \) that simultaneously minimizes them. Before equating them, we must make an assumption about \(\epsilon \). As explained in Lemma 5, we expect that \(\epsilon \) will be much smaller than \(MC \) (i.e., \(\epsilon << MC \)). We solve the aforementioned equation by generously assuming that \(\epsilon/\text{var} = MC/10 \). By equating Eq. (7.8) and Eq. (5.7), we find two roots of \(RT_\epsilon \), one positive and one negative. Because \(RT \) cannot attain negative values, we exclude the negative root from our investigation. Consequently, Eq. (7.8) and Eq. (5.7) become almost equal when \(RT = 3.5MC \), with the competitive ratio becoming 3.8. □

\[
r_{mj} > r_{uj} + \sum_{\forall n_k \in \text{Ed}(n_u)=1, n_k \neq n_m} r_{kj}, \forall n_m \in A(n_u) = 1
\] (10)

Theorem 2. Given that an 1-hop migration of \(s_i \) is performed from \(n_u \) onto \(n_m \), with \(n_u \) satisfying Eq. (10), then the network overhead decreases.

Proof. In case \(s_i \) migrates onto \(n_m \), then the network overhead increases by an amount equaling the second part of the above inequality. The above is justified by the fact that after \(s_i \) migrates onto \(n_m \), it distances itself from the load associated with \(n_u \) or datacenters using \(n_u \) to communicate with \(n_u \). The aforementioned load equals the second part of the above inequality. On the other hand, the network overhead increases by \(r_{mj} \). The above attributed to the fact that after \(s_i \) migrates onto \(n_m \), \(s_i \) comes closer to the load associated with \(n_m \) and datacenters using \(n_m \) to communicate with \(n_m \). The aforementioned load equals \(r_{mj} \). Therefore, the total network overhead decreases when \(s_i \) migrates on \(n_m \). In case \(s_i \) does not migrate on \(n_m \), then the network overhead increases. □

Theorem 3. The competitive ratio dramatically increases when the migration threshold is quite small.

Proof. Consider the case of two datacenters \(n_u \) and \(n_v \) with \(s_i \) being initially hosted on \(n_u \). Assume that the migration threshold is one. Therefore, NOM migrates \(s_i \) onto \(n_v \) when it holds that \(B_{eq} \geq 1 \). Consider also that we have the time instances \(z_1 < z_2 < \ldots < z_n \). In case \(n_v \) generates load of one unit at \(z_1 \), then NOM will perform \(M_{eq}(z_1) \). In the sequel, if \(n_v \) generates load of one unit at \(z_i \), then NOM will perform \(M_{eq}(z_i) \). If the above pattern repeats itself \(n \) times, then OPT(\(\alpha \)) = \(n \), while NOM(\(\alpha \)) = \(n \times 2MC + 2n \). Therefore, the ratio between NOM and OPT becomes \(2MC + 2 \). It can be seen that by increasing the migration threshold, the ratio between NOM and OPT decreases. The aforementioned ratio is minimized when the migration threshold is twice the network overhead of performing a migration from \(n_u \) onto \(n_v \). □

7 EXPERIMENTAL EVALUATION

This section presents an evaluation of the NOM algorithm based on simulations that performed using NS2 [27].

7.1 Setup

For the cloud infrastructure, 25 different (tree-structured) datacenter networks were generated. The number of hosted services was between 30 and 150 depending on the network size. The initial service placement on datacenters was on random. The number of client entry points to the cloud infrastructure varied by 10%, 20%, 40%, and 60% the number of datacenters, chosen randomly.

Clients were clustered in groups, depending on their entry points. Unless otherwise stated, we assume that a client has two service usage modes \(M_u \) and \(M_c \), with the first one generating ten times more request/reply traffic than the second one. To reflect the dynamic changes in client traffic, we let the clients alternate between the two modes periodically. We consider four different types of traffic variability, ultra-high (UH), high (H), low (L) and ultra-low (UL), where the period during which the clients stay within the same mode was randomly determined from a uniform distribution [1, 10], [1, 100], [50, 500], and [100, 1000], respectively. Finally, we differentiate between three client families, \(F_1 \), \(F_2 \), and \(F_3 \), where at most 50%, 10%, and 20% of clients that use a specific service can be in \(M_u \) mode at the same time.

As a yardstick for the quality of the solutions derived by NOM, we used a static offline optimal algorithm (SOP) that had an a priori knowledge of the total request/reply traffic (see [15] assuming no dependencies between VMs). Note that we could exhaustively solve the problem in an optimal offline dynamic way; however, such an approach would lead in an acceptable execution time. To illustrate the working of SOP, we use the following example. Let client groups \(q_1 \) and \(q_2 \) with entry points \(n_i \) and \(n_s \), respectively, generate traffic towards service \(s_i \) initially hosted on \(n_i \). Datacenter \(n_i \) is one hop away from \(n_s \) and the the network overhead of migrating \(s_i \) between these two datacenters is one. Moreover, assume that during the time interval [1,5], the traffic for \(q_1 \) and \(q_2 \) is ten and 100 bytes, but then changes to 40 and ten bytes, respectively, for the interval [6,10]. An online
optimal algorithm would decide to migrate s_j from n_1 to n_2 at time unit one, and then back to n_1 at time unit six, resulting in a total network overhead of 22 bytes (including the service migration network overhead). In the case of SOPT, the total traffic of q_1 and q_2 for s_j is 110 and 50 bytes, respectively, and the optimal static placement for s_j is to be hosted on n_1. Therefore, SOPT migrates s_j from n_1 to n_2 at time unit one that results in a total network overhead of 51 bytes (including the migration network overhead). SOPT performs all service migrations in the first time slot, and the placement remains unchanged for the entire duration of the experiment.

In addition, we compared NOM with the MIG algorithm presented in [4]. MIG divides time into epochs and makes the following considerations for each service s_j. In each epoch, MIG monitors for each datacenter n_x, the network overhead of serving all requests from this epoch by placing service s_j on n_x. This network overhead is kept in a variable named L_{ij}. MIG keeps the service s_j at n_x until L_{ij} reaches β. Thereafter, MIG migrates s_j to n_x chosen uniformly at random among datacenters with the property $L_{ij} < \beta$. If such a datacenter does not exist, MIG does not migrate s_j. For the next epoch, variables L_{ij} are reset to zero. In our experiments, β was expressed as a migration threshold factor multiplied by the network migration overhead of the service.

7.2 Experiments

The experimental evaluation was split into three sections. The first section concerns how the parameters of NOM and MIG affect their performance for various client traffic patterns and a fixed client family (F2). The second section investigated the behavior of NOM and MIG for different client families and a fixed client traffic pattern (L). Last, the third section compared NOM and MIG for both different traffic patterns and client families. In all experiments, the thresholds of NOM and MIG were set in a relative way, expressed as a factor of the service migration overhead. As defined previously, a migration/reset threshold equals the migration/reset threshold factor multiplied by the network overhead of migrating the respective service. From here onwards, when referring to a migration/reset threshold, it will mean the migration/reset threshold factor.

7.2.1 Varying the client traffic patterns

In a first experiment we vary the reset threshold of NOM with the migration threshold fixed at 0.1. The above choice is justified by the fact that the smaller the value of the migration threshold the greatest the range of the eligible values for the reset threshold. Note that the reset threshold was always greater than the migration threshold because otherwise the migrations were suppressed. Each variant was denoted as NOM-Rx, with x being the reset threshold. The experiment was conducted for all client traffic patterns UH, H, L, UL. Figure 5 shows the network load reduction that was achieved vs. SOPT.

As it can be seen, the performance of NOM improved for H, L, and UL as the reset threshold increased. The opposite holds for UH. Recall that a smaller reset threshold made NOM more reactive to traffic changes which in turn led to more migrations. When traffic changes were very frequent, it led into migrations that could not be amortized. On the contrary, when traffic changes were not so frequent, migrations were more likely to be amortized, while delaying the migration decision (by having a higher threshold) did not bring any advantages. Overall, the greatest improvement vs. SOPT was achieved for H.
and L. As expected, the improvement was comparatively small for UL, while no improvement was achieved for UH. The best variant was R10 closely followed by R50.

Fig. 6 shows the number of migrations. The reported values were normalized to the largest number of migrations performed in each case. We applied a separate normalization for each traffic pattern, as it was not meaningful to compare the number of migrations for different traffic patterns. As discussed above, the number of migrations decreased when increasing the reset threshold. The rate of this decrease was higher for UH, which further confirmed that in this case small reset thresholds made NOM overly reactive.

In a second experiment, we showed the behavior of NOM when varying the migration threshold while keeping the reset threshold constant at 10 (R10 was the best overall variant in the previous experiment). Note that the migration threshold could not be bigger than the reset threshold since this would suppress all migrations. As can be seen in Figure 7, the trends were similar to those of the previous experiment. However, for UH, the performance degraded for migration thresholds beyond 5.

As previously, the (normalized) number of migrations performed decreased as the migration threshold increased (see Fig. 8), but the rate of decrease was stronger in all cases. The above was reasonable since the migration threshold suppressed migrations in a direct way. In fact, the number of migrations reached almost zero when the reset threshold was equal to the migration threshold.

As we can see in Fig. 9, considering the traffic patterns H, L, and UL the performance of MIG deteriorated as we increased its migration threshold. Specifically, in case of H, SOPT performed always better than MIG. On the other hand, for the case of L and UL MIG degraded to a point (MIG-10 for L and MIG-50 for UL) where from that point onwards MIG became worse than SOPT. Concerning UH, MIG was consistently outpaced by SOPT. Particularly, MIG resulted in better outcomes when increasing the migration threshold up to the point of MIG-M5. After that point, MIG worsened. Considering all of the client families, it is seen that MIG achieved best results when the migration threshold equaled 5.

Last, in Figure 10, it is shown that the number of migrations lessened as the migrations threshold increased. It is remarkable that the number of migrations approached to zero when the migration threshold exceeds 50. The aforementioned is justified by the fact that when the migration threshold equaled 50, it means that no migration could be performed unless the total load collected was more than 50 multiplied by the size of the service.

7.2.2 Varying the client families

In this section, we conducted a series of experiments to examine the behavior of NOM and MIG compared to SOPT when varying the client families. Note that the traffic pattern was fixed (L).

Particularly, in the first experiment we considered the network load reduction of NOM when varying the client families and the reset threshold. As we can see (Figure 11), NOM performance dropped when increasing the reset threshold. As explained earlier, the above is reasonable. It is also remarkable that when the reset threshold ranged from 0.2 to 10, the network load reduction achieved by NOM against SOPT in F1 was greater than that of NOM in F2, and by far better than that of NOM in F3. The reason of the above is that it was more probable for NOM to result in beneficial migrations when the number of clients changing their traffic patterns decreased. The above did
not hold when the reset threshold ranged from 50 to 1000. The justification is that when the reset threshold increased excessively, then the load variables recorded huge amounts of network load. However, when the above happens, it is intrinsically more probable that some beneficial migrations be suppressed. Therefore, services may be locked-in at their current hosts. Unambiguously, NOM achieved best overall results in case of NOM-R0.2, with NOM-R0.5 and NOM-R1 being slightly worse.

As demonstrated in Figure 12, the variants of NOM followed the same trend as that of the previous experiment (see Figure 11). The main difference between Figure 11 and Figure 12 was that when varying the migration threshold, NOM became worse against varying its reset threshold. Another difference was that when increasing excessively the migration threshold at 10, NOM was inferior against SOPT; on the other hand, in case of setting the reset threshold to 1000, NOM remained slightly superior to SOPT. Last, it is seen that NOM in F1 became worse that that in F2 and equal to that in F3. The above was due to the services locked-in at their current hosts when a great amount of network load accumulated on the load variables (see the explanation in the previous paragraph).

Last in Figure 13, we showed the behavior of MIG when varying the migration threshold size and keeping the same settings as previously. The trends remained the same as previously. It seems that services were locked-in at their current hosting datacenters when the migration threshold ranged from 10 to 1000.

7.2.3 Comparing the best variants of NOM and MIG

In this section, we conducted a series of experiments to evaluate the performance of best variants of NOM and MIG. Specifically, in Figure 14, we demonstrated the performance of best variants of NOM and MIG against SOPT under varying client families and traffic patterns. It must be noted that we have chosen NOM-R10 and MIG-5 as best variants of NOM and MIG, respectively. As shown, NOM achieved by far superior results against MIG irrespective of the chosen traffic pattern and client family. As observed NOM achieved network load reduction up to 70% against SOPT, while up to 30% against MIG.

In Figure 15, we chose the best variant of NOM and MIG for each traffic pattern. As it can be seen from Figure 5 and Figure 7, the best variant of NOM for the traffic pattern UH was NOM-R1000, while for the traffic patterns H, L, and UL was NOM-R0.2. On the other hand, it is observed in Figure 9 that MIG-0.5 achieved the best results in terms of H, L, and UL. Note that MIG-10 was superior against its counterparts regarding UH. In Figure 15, the aforementioned variants were called NOM-BEST and MIG-BEST. As depicted in that figure, the NOM approached the performance of SOPT when the chosen traffic pattern was UH. Specifically, NOM achieved network load reduction of -4.5%, -2.5%, and -0.9% against SOPT when the client family was F1, F2, and F3, respectively. It is remarkable that when the traffic pattern was H, L, and UL, NOM achieved network load reduction from 7.8% up to 80% against SOPT. On the other hand, MIG achieved network load reduction from -17.5% up to -5.7% against SOPT under UH; while for the rest traffic patterns its network load reduction compared to SOPT ranged from -1.4% up to 69%.

Last in Figure 16, we showed the (normalized) number of migrations performed between NOM-BEST and MIG-BEST variants. As depicted in the figure, NOM performed always more migrations against MIG. Specifically, when delving into the details of both Figure 15 and Figure 16, we observed the following fact. When the difference between the performance of NOM and MIG increased, then we had also an increase in the difference between the number of migrations performed by NOM and MIG. The above meant that better performance reflected to more migrations.

The reason that NOM outperforms MIG is that the latter resets the load variables in a harsh way when an epoch ends without considering the collected load. On the other extreme, NOM resets the load variables in a sophisticated way, which is based on the collected load. By reducing the duration of an epoch it is likely to result in the following situation. Consider two services that the optimal algorithm would decide to migrate them. Assume that the load related with the first service increases quickly, while the load of the second service increases slowly. If the epoch is reduced, then MIG may migrate the first service in the same way as that of our algorithm. On the other hand, MIG may never migrate the second service, because the load variables may never reach the migration threshold.

8 CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we introduced the problem of deciding at what point in time a service must be migrated to reduce the network overhead. We proposed the network overhead migration algorithm (called NOM) as solution to the above problem. We gave an analytical proof about NOM is 3.8 competitive when the underlying network is structured as a tree. We conducted experimental evaluation to compare NOM and the best known online algorithm within the current literature (called MIG) to a static offline optimal algorithm (SOPT). We found that NOM outperforms MIG in all scenarios, while it is defeated by SOPT only in case of traffic patterns that change very frequently.

In the future, we plan to (a) incorporate machine learning techniques to predict the underlying system dynamics for improved performance of our online algorithms. (b) Adapt NOM to work on general graph networks according to the intuition given in Section IV.

REFERENCES

perience, 24(13), 1397-1420, 2012.

[27] Network Simulator2 (ns2), http://www.isi.edu/nsnam/ns/

AUTHOR’S BIOGRAPHIES
Nikos Tziritas received his Ph.D. degree from the University of Thessaly, Greece, 2011. He is currently an assistant professor in Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. His research has been on scheduling, load-balancing and replication in CDNs, as well as energy optimization and resource management in WSNs and cloud computing systems.

Samee U. Khan is Associate Professor of Electrical and Computer Engineering at the North Dakota State University, Fargo, ND, USA. Prof. Khan’s research interests include optimization, robustness, and security of: cloud, cluster and big data computing, social networks, wired and wireless networks, power systems, and optical networks. His work has appeared in over 300 publications. He is a Fellow of the Institution of Engineering and Technology (IET, formerly IEE), and a Fellow of the British Computer Society (BCS).

Thanasis Loukopoulos received his Diploma in Computer Engineering and Informatics from the University of Patras, Greece, in 1997. He was awarded a PhD degree in Computer Science by the Hong Kong University of Science and Technology (HKUST) in 2002. Currently, he is lecturer in University of Thessaly, Greece. He has published 40 papers, and had the best paper award in ICPP 2001.

Spyros Lalis is Associate Professor at the Electrical and Computer Engineering Department, University of Thessaly, Greece, and Research Associate at the Center for Research & Technology Thessaly (CERETETH). His main research interests are programming environments, operating systems, parallel & distributed systems, and ubiquitous computing systems. He received his Diploma and PhD in Computer Science from ETH Zurich.

Cheng-Zhong Xu received the PhD degree in computer science from the University of Hong Kong in 1993. He is currently a professor in the Department of Electrical and Computer Engineering of Wayne State University, and the director of Cloud and Internet Computing Laboratory (CIC) and Sun’s Center of Excellence in Open Source Computing and Applications (OSCA). His research interest is mainly in scalable distributed and parallel systems and wireless embedded computing devices. He has published two books and more than 160 articles in peer-reviewed journals and conferences in these areas.

Keqin Li is a SUNY Distinguished Professor of computer science. He has published over 350 journal articles, book chapters, and refereed conference papers, and has received several best paper awards. He is currently or has served on the editorial boards of IEEE Transactions on Parallel and Distributed Systems, IEEE Transactions on Computers, IEEE Transactions on Cloud Computing, Journal of Parallel and Distributed Computing. He is an IEEE Fellow.

Albert Y. Zomaya is the Chair Professor of High Performance Computing & Networking in School of Information Technologies, University of Sydney. Prof. Zomaya is the author/co-author of seven books, more than 400 papers, and the editor of 12 books and 15 conference proceedings. He was the Editor in Chief of the IEEE Transactions on Computers and servers as an associate editor for 19 leading journals. He is a Fellow of the IET and AAAS.