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procedure in the kth trial stops. Thus the noise-added

signal xk(t) can be decomposed in the following form:

xk(t) =
I∑

i=1

imf i
k(t) + rI(t) (9)

where rI(t) is the residual signal of the xk(t) after I
IMFs are decomposed.

7) If k < K, go to Step 2 with k = k + 1; Otherwise, the

present trials have been completed; The ith IMF of the

average of the results in all the trials is:

imf i(t) =

K∑

k=1

imf i
k(t)

K
(10)

where i = 1, 2, . . . , I .

8) Based on imfi(t), i = 1, 2, . . . , I , we can eventually

obtain the HHSE of x(t) as follows:

• Apply the Hilbert transform on IMF, we then have:

Z(t) = imf(t) + iH[imf(t)] (11)

= a(t)ei
∫

ω(t)dt (12)

where,

a(t) =
√
imf2(t) +H2[imf(t)] (13)

ω(t) =
d

dt

(
atg

(H[imf(t)]

imf(t)

))
(14)

h(ω) =

∫
H(ω, t)dt (15)

• Then we can calculate the HHSE as follows:

HHSE =
H

log(I)
(16)

where, I is the number of frequencies,

H = Š
∑

j

ĥ(f)log(ĥ(f)) (17)

ĥ(f) =
h(f)∑
h(f)

(18)

From the presentation of above algorithms, we can find that:

• The EEMD calculation is very data intensive due to a

number of additional trials introduced in the epoch level

signal processing.

• The data set processed by EEMD is massive as the real-

time neural signal data contains sources from multiple

channels, epochs and trials.

• The EEMD algorithm has multiple levels of parallelism

in the epoch level and in the trial level.

Therefore in this research we present our work of the massive

neural signal processing with MapReduce on Hadoop, which

allows to distribute the massive EEG data on various nodes and

analyze it in parallel with a batch mode. The next section we

will introduce the technical details of MapReduce and Hadoop.

IV. MAPREDUCE PROGRAMMING MODEL

The MapReduce [12] programming model is inspired by

two main functions commonly used in functional program-

ming: Map and Reduce. The Map function processes key/value

pairs to generate a set of intermediate key/value pairs and

the Reduce function merges all the same intermediate values.

Many real-world applications are expressed using this model.

One framework that implements MapReduce is Hadoop [1],

which allows applications to run on large clusters built from

commodity hardware. The Hadoop framework transparently

provides both reliability and data transfer.

Our work of parallel neural signal processing is implement-

ed in the Hadoop common framework. Therefore this section

discusses the background of the Hadoop common framework,

which includes two parts: the Hadoop MapReduce framework

and the Hadoop Distributed File System (HDFS).

V. DESIGN AND IMPLEMENTATION OF PARALLEL

EED PROCESSING WITH MAPREDUCE

A. Design of Parallel EEG Processing with MapReduce

The parallelism of an EEMD processing with the EEMD

algorithm can be characterized in at least two levels (Figure

1):

• Epoch level

The EEMD procedure for an epoch of time series is

treated as a whole at this level. The data in an epoch

are input to the same EEMD procedure individually, and

the outputs from any instance of EEMD procedure will

not be consumed by another. The degree of parallelism is

the number of epochs, which increases linearly with the

size of the EEG dataset.

• Trial level

A trial (a noise-added epoch) is treated as whole at

this level. Given a number of trials per EEMD instance,

the decomposition of each trial is always performed

independently from the others. The IMFs of an original

epoch are only inferred after computing the ensemble of

trials. The degree of parallelism is the number of trials

per ensemble times the number of epochs. A task at trial

level only handles a short time series.

Therefore we design the parallel EEG processing with a

hierarchical MapReduce as follows (Figure 4):

• Each epoch is processed by one MapReduce job executed

by a Hadoop cluster (shown in Figure 4 (1)).

• For one MapReduce job, we have K trials processed

by one Map tasks: kth mapper, k = 1, . . . ,K. The

kth mapper decomposes all imf i
k(t) for the kth trials,

i = 1, . . . , I . Then we have one reducer , which calculates

imf i(t) for all K trials and HHSE (shown in Figure 4

(2)).

B. A Cyberinfrastructure for Parallel EEG Processing with
Hadoop

A cyberinfrastructure [24], [26] is developed to handle

parallel EEG processing with Hadoop. It incorporates a mid-

dleware for Cloud computing [8], [23], [25] – a dynamic
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Fig. 4. Parallel EEG data processing with Hadoop
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Fig. 5. Cyberinfrastructure for parallel EEG processing

Hadoop cluster client shell, a Hadoop cluster, parallel EEG

calculation, and sensor networks which provide the real-time

EEG signal retrieval. Figure 5 overviews the process for the

parallel EEG processing in the cyberinfrastructure:

1) EEG data are retrieved by a user and stored in user’s

storage device.

2) The user requires a dynamic Hadoop cluster from a

computing cloud test bed (e.g., the “India” cluster in

our context) based on the input EEG data set.

3) A Hadoop cluster is dynamically deployed and returned

to the user. A shell script is developed for dynamically

deployment of a Hadoop cluster with the following

steps:

a) based on user’s requirement, it demands a number

of cluster nodes from the cluster job manager, such

as Torque [5] in our implementation;

b) distribute Hadoop packages to the master node and

slave nodes in the Hadoop cluster;

c) configure Hadoop configuration files with the avail-

able node IP addresses achieved in step 3(a).

d) start Hadoop master/slave daemons on the Hadoop

cluster;

e) return the Hadoop the IP address and the port

number of the Hadoop master node to the user.

4) The user then uploads the EEG data to the HDFS

and submits parallel EEG processing application to the

Hadoop cluster for the job execution.

VI. TESTS AND PERFORMANCE EVALUATION

A. Test organization

We test the parallel EEG processing application in Hadoop

clusters for performance evaluation. The Hadoop clusters are

dynamically allocated in a HPC cluster – “India”, hosted

by an academic Cloud computing test infrastructure – the

FugureGrid test bed [2].

TABLE I
TEST BED

Resource India

Site Indiana University

CPU number 256

Performance (Teraflop) 11

Total RAM (GB) 3072

Secondary storage (TB) 335

We set up an 8-node Hadoop cluster from “India” as

described in V-B. On the Hadoop cluster, we executed the

parallel EEG processing in the following conditions:

• various input EEG data set with different size: 4KB, 8KB,

. . . , 40KB;

• various MapReduce task configurations: 1, 2 and 3 map-

per tasks per node.

B. Test results

The EEG data for test were recorded from scalp surface (F3,

F4, C3, C4, O1 and O2 by the International 10-20 System)
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Secondly we examined the task execution time of parallel

EEG data processing with MapReduce. Table III and Figure

12 show the test results. We have two fundings form the test

results:

• The job execution time is in direct proportion to the

input EEG data size. This funding verifies the scalability

of MapReduce parallel processing paradigm, which is

declared as one of the Hadoop’s merits.

• The optimal value of mapper number per node is 2. This

value is determined by the application and compute re-

source (e.g. memory, processor) per node. As the overall

resource per node is limited and constant, therefore too

many or two small mapper number may decrease the

performance of parallel processing.

TABLE III
JOB EXECUTION TIME OF PARALLEL EEG PROCESSING WITH HADOOP

EEG data mapper(s)/node

size (KB) 1 2 3

4 139.417 86.062 103.038

8 243.758 136.484 184.257

12 347.691 198.313 245.429

16 474.293 242.628 314.672

20 567.431 305.858 384.134

24 671.96 362.254 449.223

28 786.107 417.992 527.438

32 882.656 477.141 600.601

36 1005.863 543.588 663.078

40 1113.151 584.594 733.973
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Fig. 12. Execution time of parallel EEG processing with Hadoop

VII. CONCLUSION AND FUTURE WORK

Recently Ensemble Empirical Mode Decomposition

(EEMD) has become a revolutionary solution to neural signal

processing. As presented in the paper, neural signal processing

with EEMD is both compute-intensive and data-intensive.

The MapReduce computing paradigm and its Hadoop

implementation emerge as a widely-accepted programming

model and solution for data intensive computing. This

research has proposed a parallel neural signal processing

with EEMD with the MapReduce paradigm. We develop

multiple parallelism in the EEMD neural signal processing:

the epoch-level parallelism and the trial-level parallelism. We

implement the parallel EEMD processing with an advanced

cyberinfrastructure – a dynamic Hadoop cluster on the

FutureGrid test bed. Test results and performance evaluation

justify our design and implementation. In our future work,

we continue developing the EEMD on large Hadoop clusters

to exploit multiple level parallelisms. Also we will implement

highly efficient runtime support for uploading large EEG data

set to the HDFS.
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