
166166166



procedure in the kth trial stops. Thus the noise-added

signal xk(t) can be decomposed in the following form:

xk(t) =
I∑

i=1

imf i
k(t) + rI(t) (9)

where rI(t) is the residual signal of the xk(t) after I
IMFs are decomposed.

7) If k < K, go to Step 2 with k = k + 1; Otherwise, the

present trials have been completed; The ith IMF of the

average of the results in all the trials is:

imf i(t) =

K∑

k=1

imf i
k(t)

K
(10)

where i = 1, 2, . . . , I .

8) Based on imfi(t), i = 1, 2, . . . , I , we can eventually

obtain the HHSE of x(t) as follows:

• Apply the Hilbert transform on IMF, we then have:

Z(t) = imf(t) + iH[imf(t)] (11)

= a(t)ei
∫

ω(t)dt (12)

where,

a(t) =
√
imf2(t) +H2[imf(t)] (13)

ω(t) =
d

dt

(
atg

(H[imf(t)]

imf(t)

))
(14)

h(ω) =

∫
H(ω, t)dt (15)

• Then we can calculate the HHSE as follows:

HHSE =
H

log(I)
(16)

where, I is the number of frequencies,

H = Š
∑

j

ĥ(f)log(ĥ(f)) (17)

ĥ(f) =
h(f)∑
h(f)

(18)

From the presentation of above algorithms, we can find that:

• The EEMD calculation is very data intensive due to a

number of additional trials introduced in the epoch level

signal processing.

• The data set processed by EEMD is massive as the real-

time neural signal data contains sources from multiple

channels, epochs and trials.

• The EEMD algorithm has multiple levels of parallelism

in the epoch level and in the trial level.

Therefore in this research we present our work of the massive

neural signal processing with MapReduce on Hadoop, which

allows to distribute the massive EEG data on various nodes and

analyze it in parallel with a batch mode. The next section we

will introduce the technical details of MapReduce and Hadoop.

IV. MAPREDUCE PROGRAMMING MODEL

The MapReduce [12] programming model is inspired by

two main functions commonly used in functional program-

ming: Map and Reduce. The Map function processes key/value

pairs to generate a set of intermediate key/value pairs and

the Reduce function merges all the same intermediate values.

Many real-world applications are expressed using this model.

One framework that implements MapReduce is Hadoop [1],

which allows applications to run on large clusters built from

commodity hardware. The Hadoop framework transparently

provides both reliability and data transfer.

Our work of parallel neural signal processing is implement-

ed in the Hadoop common framework. Therefore this section

discusses the background of the Hadoop common framework,

which includes two parts: the Hadoop MapReduce framework

and the Hadoop Distributed File System (HDFS).

V. DESIGN AND IMPLEMENTATION OF PARALLEL

EED PROCESSING WITH MAPREDUCE

A. Design of Parallel EEG Processing with MapReduce

The parallelism of an EEMD processing with the EEMD

algorithm can be characterized in at least two levels (Figure

1):

• Epoch level

The EEMD procedure for an epoch of time series is

treated as a whole at this level. The data in an epoch

are input to the same EEMD procedure individually, and

the outputs from any instance of EEMD procedure will

not be consumed by another. The degree of parallelism is

the number of epochs, which increases linearly with the

size of the EEG dataset.

• Trial level

A trial (a noise-added epoch) is treated as whole at

this level. Given a number of trials per EEMD instance,

the decomposition of each trial is always performed

independently from the others. The IMFs of an original

epoch are only inferred after computing the ensemble of

trials. The degree of parallelism is the number of trials

per ensemble times the number of epochs. A task at trial

level only handles a short time series.

Therefore we design the parallel EEG processing with a

hierarchical MapReduce as follows (Figure 4):

• Each epoch is processed by one MapReduce job executed

by a Hadoop cluster (shown in Figure 4 (1)).

• For one MapReduce job, we have K trials processed

by one Map tasks: kth mapper, k = 1, . . . ,K. The

kth mapper decomposes all imf i
k(t) for the kth trials,

i = 1, . . . , I . Then we have one reducer , which calculates

imf i(t) for all K trials and HHSE (shown in Figure 4

(2)).

B. A Cyberinfrastructure for Parallel EEG Processing with
Hadoop

A cyberinfrastructure [24], [26] is developed to handle

parallel EEG processing with Hadoop. It incorporates a mid-

dleware for Cloud computing [8], [23], [25] – a dynamic

167167



1st epoch

��

...

��

mth epoch

��

...

��MapReduce
Job

... MapReduce
Job

..

(1) Epoch level parallelism

mth epoch

��
MapReduce

Job

��
��

��
��

��
1st

mapper

��

...

��

kth

mapper

��

...

��

Kth

mapper

��
imf i

1(t)
i = 1, . . . , I

��

...

��

imf i
k(t)

i = 1, . . . , I

��

...

		

imf i
K(t)

i = 1, . . . , I




Reducer

��
imf i(t)

i = 1, . . . , I

��
HHSE

(2) Trial level parallelism

Fig. 4. Parallel EEG data processing with Hadoop

User

Hadoop cluster

Dynamic Hadoop 
client shell

Computing Cloud

job submission
require a Hadoop cluster

H
adoop cluster
 deploym

ent

Storage

EEG data collecction 

Fig. 5. Cyberinfrastructure for parallel EEG processing

Hadoop cluster client shell, a Hadoop cluster, parallel EEG

calculation, and sensor networks which provide the real-time

EEG signal retrieval. Figure 5 overviews the process for the

parallel EEG processing in the cyberinfrastructure:

1) EEG data are retrieved by a user and stored in user’s

storage device.

2) The user requires a dynamic Hadoop cluster from a

computing cloud test bed (e.g., the “India” cluster in

our context) based on the input EEG data set.

3) A Hadoop cluster is dynamically deployed and returned

to the user. A shell script is developed for dynamically

deployment of a Hadoop cluster with the following

steps:

a) based on user’s requirement, it demands a number

of cluster nodes from the cluster job manager, such

as Torque [5] in our implementation;

b) distribute Hadoop packages to the master node and

slave nodes in the Hadoop cluster;

c) configure Hadoop configuration files with the avail-

able node IP addresses achieved in step 3(a).

d) start Hadoop master/slave daemons on the Hadoop

cluster;

e) return the Hadoop the IP address and the port

number of the Hadoop master node to the user.

4) The user then uploads the EEG data to the HDFS

and submits parallel EEG processing application to the

Hadoop cluster for the job execution.

VI. TESTS AND PERFORMANCE EVALUATION

A. Test organization

We test the parallel EEG processing application in Hadoop

clusters for performance evaluation. The Hadoop clusters are

dynamically allocated in a HPC cluster – “India”, hosted

by an academic Cloud computing test infrastructure – the

FugureGrid test bed [2].

TABLE I
TEST BED

Resource India

Site Indiana University

CPU number 256

Performance (Teraflop) 11

Total RAM (GB) 3072

Secondary storage (TB) 335

We set up an 8-node Hadoop cluster from “India” as

described in V-B. On the Hadoop cluster, we executed the

parallel EEG processing in the following conditions:

• various input EEG data set with different size: 4KB, 8KB,

. . . , 40KB;

• various MapReduce task configurations: 1, 2 and 3 map-

per tasks per node.

B. Test results

The EEG data for test were recorded from scalp surface (F3,

F4, C3, C4, O1 and O2 by the International 10-20 System)

168168



169169169



Secondly we examined the task execution time of parallel

EEG data processing with MapReduce. Table III and Figure

12 show the test results. We have two fundings form the test

results:

• The job execution time is in direct proportion to the

input EEG data size. This funding verifies the scalability

of MapReduce parallel processing paradigm, which is

declared as one of the Hadoop’s merits.

• The optimal value of mapper number per node is 2. This

value is determined by the application and compute re-

source (e.g. memory, processor) per node. As the overall

resource per node is limited and constant, therefore too

many or two small mapper number may decrease the

performance of parallel processing.

TABLE III
JOB EXECUTION TIME OF PARALLEL EEG PROCESSING WITH HADOOP

EEG data mapper(s)/node

size (KB) 1 2 3

4 139.417 86.062 103.038

8 243.758 136.484 184.257

12 347.691 198.313 245.429

16 474.293 242.628 314.672

20 567.431 305.858 384.134

24 671.96 362.254 449.223

28 786.107 417.992 527.438

32 882.656 477.141 600.601

36 1005.863 543.588 663.078

40 1113.151 584.594 733.973

5 10 15 20 25 30 35 40

20
0

40
0

60
0

80
0

10
00

Input EEG Data Size (KB)

E
xe

cu
tio

n 
T

im
e(

se
co

nd
)

1 mapper/node
2 mappers/node
3 mappers/node

Fig. 12. Execution time of parallel EEG processing with Hadoop

VII. CONCLUSION AND FUTURE WORK

Recently Ensemble Empirical Mode Decomposition

(EEMD) has become a revolutionary solution to neural signal

processing. As presented in the paper, neural signal processing

with EEMD is both compute-intensive and data-intensive.

The MapReduce computing paradigm and its Hadoop

implementation emerge as a widely-accepted programming

model and solution for data intensive computing. This

research has proposed a parallel neural signal processing

with EEMD with the MapReduce paradigm. We develop

multiple parallelism in the EEMD neural signal processing:

the epoch-level parallelism and the trial-level parallelism. We

implement the parallel EEMD processing with an advanced

cyberinfrastructure – a dynamic Hadoop cluster on the

FutureGrid test bed. Test results and performance evaluation

justify our design and implementation. In our future work,

we continue developing the EEMD on large Hadoop clusters

to exploit multiple level parallelisms. Also we will implement

highly efficient runtime support for uploading large EEG data

set to the HDFS.

ACKNOWLEDGEMENT

Dr. Lizhe Wang’s work is supported by “One Hundred

Talents Programme” of Chinese Academy of Sciences.

Dr. Dan Chen’s work is supported in part by National

Science Fund for Distinguished Young Scholars (grant No.

61025019), the National Natural Science Foundation of China

(grants No. 90820016, 60804036), the Hundred University

Talent of Creative Research Excellence Programme (Hebei,

China), the Programme of High-Resolution Earth Observing

System (China), and the Fundamental Research Funds for the

Central Universities (CUGL100608, CUG, Wuhan).

Dr. Jun Wang’s work is supported in part by the US National

Science Foundation Grant CCF-0811413, CNS-1115665, and

National Science Foundation Early Career Award 0953946.

Dr. Samee U. Khan’s work is partly supported by the Young

International Scientist Fellowship of the Chinese Academy of

Sciences, (Grant No. 2011Y2GA01).

The test bed used in the research is supported by the

FutureGrid project supported in part by the National Science

Foundation under Grant No. 0910812 to Indiana University for

“FutureGrid: An Experimental, High-Performance Grid Test-

bed.”

REFERENCES

[1] Apache hadoop project. Web Page. http://hadoop.apache.org/.
[2] Futuregrid project. Web Page. http://www.futuregrid.org/.
[3] Gpgpu. Website. http://gpgpu.org/.
[4] Openmp. Website. http://openmp.org/.
[5] Torque resource manager. Website.
[6] Selin Aviyente. Compressed sensing framework for eeg compression.

In Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical
Signal Processing, pages 181–184, Washington, DC, USA, 2007. IEEE
Computer Society.

[7] Rajkumar Buyya, Susumu Date, Yuko Mizuno-Matsumoto, Srikumar
Venugopal, and David Abramson. Neuroscience instrumentation and
distributed analysis of brain activity data: a case for escience on
global grids. Concurrency and Computation: Practice and Experience,
17(15):1783–1798, 2005.

[8] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De
Rose, and Rajkumar Buyya. Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw., Pract. Exper., 41(1):23–50, 2011.

[9] Dan Chen, Duan Li, Muzhou Xiong, Hong Bao, and Xiaoli Li. GPGPU-
aided ensemble empirical-mode decomposition for EEG analysis during
anesthesia. IEEE Trans. Info. Tech. Biomed., 14:1417–1427, November
2010.

170170



[10] Dan Chen, Lizhe Wang, Gaoxiang Ouyang, and Xiaoli Li. Massively
parallel neural signal processing on a many-core platform. Computing
in Science and Engineering, 2011.

[11] Susumu Date, Shinji Shimo jo, Mizuno-Matsumoto Yuko, Bu Sung Lee,
Wentong Cai, and Lizhe Wang. Distributed processing and visualization
of meg data. In Proceedings of International Conference on Scientic and
Engineering Computation (IC-SEC•02), pages 850 – 855, Singapore,
Dec. 2002.

[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51:107–113, January 2008.

[13] Piotr J. Durka and Dobies Ircha. Signalml: metaformat for description of
biomedical time series. Comput. Methods Prog. Biomed., 76:253–259,
December 2004.

[14] Hubert Eichner, Tobias Klug, and Alexander Borst. Neural simulations
on multi-core architectures. Frontiers in neuroinformatics, 3(July), 2009.

[15] Kathleen Ericson, Shrideep Pallickara, and Charles W. Anderson. An-
alyzing electroencephalograms using cloud computing techniques. In
Cloud Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on, pages 185 – 192, Dec. 2010.

[16] D. Gopikrishna and Anamitra Makur. A high performance scheme for
eeg compression using a multichannel model. In Proceedings of the 9th
International Conference on High Performance Computing, HiPC ’02,
pages 443–451, London, UK, UK, 2002. Springer-Verlag.

[17] Uri Hasson, Jeremy I Skipper, Michael J Wilde, Howard C Nusbaum,
and Steven L Small. Improving the analysis, storage and sharing of
neuroimaging data using relational databases and distributed computing.
NeuroImage, 39(2):693–706, 2008.

[18] Norden E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H.
Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H.
Liu. The empirical mode decomposition and the Hilbert spectrum
for nonlinear and non-stationary time series analysis. Proceedings of
the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 454(1971):903–995, March 1998.

[19] M. Laubach, Y. Arieh, A. Luczak, J. Oh, and Y. Xu. A cluster
of workstations for on-line analyses of neurophysiological data. In
Bioengineering Conference, 2003 IEEE 29th Annual, Proceedings of,
pages 17 – 18, march 2003.

[20] Xiaoli Li, Duan Li, Zhenhu Liang, Logan J. Voss, and Jamie W. Sleigh.
Analysis of depth of anesthesia with hilbert-huang spectral entropy.
Clinical Neurophysiology, 119(11):2465 – 2475, 2008.

[21] Dennis McFarland, A. Lefkowicz, and Jonathan Wolpaw. Design and
operation of an eeg-based brain-computer interface with digital signal
processing technology. Behavior Research Methods, 29:337 – 345, 1997.

[22] Andy Muller, Hannes Osterhage, Robert Sowa, Ralph G. Andrzejak,
Florian Mormann, and Klaus Lehnertz. A distributed computing system
for multivariate time series analyses of multichannel neurophysiological
data. Journal of Neuroscience Methods, 152:190 – 201, 2006.

[23] Rajiv Ranjan, Liang Zhao, Xiaomin Wu, Anna Liu, Andres Quiroz, and
Manish Parashar. Peer-to-peer cloud provisioning: Service discovery and
load-balancing. In Nick Antonopoulos and Lee Gillam, editors, Cloud
Computing, volume 0 of Computer Communications and Networks,
pages 195–217. Springer London, 2010.

[24] Lizhe Wang and Cheng Fu. Research advances in modern cyberinfras-
tructure. New Generation Comput., 28(2):111–112, 2010.

[25] Lizhe Wang, Marcel Kunze, Jie Tao, and Gregor von Laszewski. Toward-
s building a cloud for scientific applications. Advances in Engineering
Software, 42(9):714–722, 2011.

[26] Lizhe Wang, Gregor von Laszewski, Andrew J. Younge, Xi He, Marcel
Kunze, Jie Tao, and Cheng Fu. Cloud computing: a perspective study.
New Generation Comput., 28(2):137–146, 2010.

[27] Adam J Wilson and Justin C Williams. Massively parallel signal pro-
cessing using the graphics processing unit for real-time braincomputer
interface feature extraction. Frontiers in neuroengineering, 2:11, 2009.

[28] Zhaohua Wu and Norden E. Huang. Ensemble Empirical Mode
Decomposition: a Noise-Assisted Data Analysis Method. Advances in
Adaptive Data Analysis, 1(1):1–41, 2009.

[29] Yufeng Yao, Jinyi Chang, and Kaijian Xia. A case of parallel eeg data
processing upon a beowulf cluster. In Proceedings of the 2009 15th
International Conference on Parallel and Distributed Systems, ICPADS
’09, pages 799–803, Washington, DC, USA, 2009. IEEE Computer
Society.

171171171


