Request Dispatching for Minimizing Service Response Time in Edge Cloud Systems

Hongyue Wu1,2, Shuiguang Deng1, Wei Li2, Samee U. Khan3, Jianwei Yin1, and Albert Y. Zomaya2

1 College of Computer Science and Technology, Zhejiang University, Hangzhou, China \{hongyue_wu, dengsg, zjuyjw\}@zju.edu.cn

2 School of Information Technologies, The University of Sydney, Sydney, Australia liwei@it.usyd.edu.au, albert.zomaya@sydney.edu.au

3 Department of Electrical and Computer Engineering, North Dakota State University, Fargo, USA samee.khan@ndsu.edu

Abstract—The emerging of mobile edge computing has significantly reduced the response time and Internet risk of service invocations. However, due to the distributed architecture and limited resources, balancing the load between edge servers to minimize the overall response time has become a critical objective for mobile edge computing. This problem is generally related to two aspects, request dispatching and service scheduling. To address this issue, we proposed a novel heuristic method called GASD (combined Genetic algorithm and simulated Annealing algorithm for Service request Dispatching). It tackles the problem by jointly conducting request dispatching and service scheduling. In addition, a solution combination algorithm is applied to reduce the computation complexity of the method. The experimental results show that the GASD method can achieve much lower overall response time than the compared methods. Moreover, the execution time of GASD is in a low order of magnitude and the algorithm performs excellent scalability as the experimental scale increases.

Keywords—mobile edge computing; service computing; response time; request dispatching; scheduling

I. INTRODUCTION

In recent years, mobile devices have become one of the fastest adopted consumer products of all time and highly integrated into our daily life \cite{1}. Although mobile devices have been constantly improved in terms of computation, communication and storage, they are still resource constrained when facing applications demanding high computational resources, such as multimedia processing, social networking and natural language processing. To enable such applications to run effectively on mobile devices, mobile cloud computing (MCC) \cite{2} is proposed to allow mobile devices to offload computationally intensive tasks to the resource-rich cloud service providers. By such means, mobile devices are reduced to I/O terminals, while servers execute the heavy work, and hence significantly extends the capability and storage of mobile devices. However, in such MCC systems, mobile devices connect directly to centralized Internet cloud center, which inherently incurs relatively long and unstable latency between the mobile devices and the cloud.

To solve this problem, mobile edge computing (MEC) is proposed, where an abstract edge tier is added between mobile devices and cloud servers. Edge servers could be fixed infrastructures connected to the wireless access networks, or augmented routers and switchers in the wireless access networks \cite{3}. MEC brings the cloud closer to mobile users by caching the cloud services on edge servers and shifting service execution from remote cloud servers to relatively close edge servers. MEC not only has the advantages of MCC, but can further reduce the response time of service invocations. Moreover, with service parameters transmitted directly between edge servers and mobile devices instead of through the Internet, the response time and Internet risk of service invocation are significantly reduced.

However, MEC still faces some challenges. In contrast to powerful cloud servers, edge servers are resource constrained, so when an edge server is accommodated with excessive service requests, the execution of some requests will be delayed, which leads to the response time of these requests be extended, even exceeds the response time by invoking the services on remote cloud servers. Since in MEC systems, service consumers are generally moving, it is rather important to reduce the invocation delay of services as much as possible. This task can mainly be divided into two goals as follows:

1) Selecting an appropriate edge server or cloud server for each service request: For a service request, there may be more than one edge server can provide the required service. These edge servers are of different capabilities, resources, accommodated service requests, as well as varied data transmission time and service execution time. When edge servers are overloaded, excessive overall response time can be induced and the advantages of edge computing is diminished. In such circumstances, remote cloud server will become a better solution ascribing to its short execution time and waiting time of service invocations. Therefore, it is a pivotal problem to balance the request processing between edge servers to avoid overload or wasted resources in any edge server, and eventually minimize the overall response time of requests.

2) Scheduling the accommodated service requests to minimize their average response time for each edge server: For each edge server, as its resources are limited, service requests are generally waiting in queue for execution. These service requests are of different required resources and execution time. Therefore, proper scheduling is required to fully utilize the limited resources and thus minimize the overall response time of accommodated services.
In this paper, we focus on minimizing service response time by jointly considering request dispatching and request scheduling in edge cloud systems. A novel heuristic approach is proposed by combing the genetic algorithm and the simulated annealing algorithm to optimize the request dispatching process. The request scheduling of edge servers is addressed by a novel request scheduling algorithm. Then, we combined these two algorithms to minimize the overall response time of service requests. Moreover, we introduced a novel solution recombination strategy, which significantly improves the efficiency of the algorithms.

The rest of the paper is organized as follows. In section II, we discuss related works. In Section III, we define the problem and present the formal models. Then we describe the main operations and algorithms in detail in Section IV. In Section V, we show the evaluation experiments and analyze the results. Finally, we conclude the paper in Section VI.

II. RELATED WORK

In mobile computing systems, reducing the response time of services is always a research hotspot. Multiple approaches have been proposed from different perspectives to address this problem. Many researchers tackle this problem through VM migration [4], [5], [6]. For example, in [4], Rodrigues et al. presented a hybrid method to minimize service delay in a scenario with two edge servers. Some studies pay attention to application partitioning [7], [8], [9], [10], which attempts to minimizing service delay by dividing service tasks into mutually independent components and executing them in parallel. Moreover, many works aim at lowering service response time by selecting services with the lowest response time for mobile users [11], [12], [13]. For example, in [11], to reduce the service delay, Deng et al. proposed a mobility model, a mobility-aware service response time computation rule, and a mobility-enabled service selection algorithm based on teaching-learning-based optimization.

Service scheduling has also attracted extensive research efforts in mobile computing systems. Liu et al. proposed a delay-optimal computation task scheduling for mobile edge computing systems. By analyzing the average delay of each task and the average power consumption at the mobile device, they proposed an efficient one-dimensional search algorithm to find the optimal task scheduling policy [14]. To optimize operational costs while providing rigorous performance guarantees in edge cloud systems, Urgaonkar et al. developed a novel alternate methodology to solve this problem [15]. In [16], Wang et al. proposed a task scheduling approach that sets different processing priorities for different tasks based on the collected data on human health status to reduce its processing time. In our previous work, we have also proposed a lightweight service scheduling algorithm RESP, which can jointly manage service selection, scheduling and resource allocation to address the resource limitation issue in mobile cloud systems [1].

Effective request dispatching is a most common way to reduce service delay in mobile edge computing, which aims at balancing the workload among edge servers to avoid overload or wasted resources in any of the edge server. Yang et al. focused on the joint optimization of service placement and load dispatching in the mobile edge cloud systems and developed a set of efficient algorithms for service providers to achieve various trade-offs among the average latency of mobile users’ requests, and the cost of service providers [17]. To minimize the task completion time, Zeng et al. jointly considered the balancing of workload between client devices and computation servers, task image placement and balancing of the I/O interrupt requests among the storage servers and proposed a computation-efficient solution to solve it [18]. Jia et al. introduced a system model to capture the response times of offloaded tasks, and formulated a novel optimization problem, that is to find an optimal redirection of tasks between cloudlets such that the maximum of the average response times of tasks at cloudlets is minimized [19].

As mention above, both service scheduling and request dispatching have been widely addressed to lower service response time. However, most researches only consider one of them and jointly considering them to reduce service delay has not been addressed so far to the best of our knowledge. As both of them are pivotal ways for service delay minimization, we jointly consider them in this paper.

III. PROBLEM FORMULATION

A. Edge Cloud Architecture

Our proposed framework is designed for edge computing systems, which are composed of three tiers, i.e. consumer tier, edge tier and cloud tier, as shown in Figure 1. We assume the following properties:

- There are one cloud center and multiple edge servers in the edge computing system. Edge servers can completely cover the whole 2-D area, so when a service request is proposed, it can be sent to a nearby edge server for processing.
- For each service request, only a part of edge servers can provide corresponding services to satisfy the request, while the cloud can provide all services.
- For any two edge servers, there exists a network path connecting them, and for each edge server, there exists a network path connecting it to the cloud.
- When an edge server receives a request, it can execute the service itself only if there is a corresponding service deployed on it, while if no corresponding service is deployed on it, it can only forward the

![Figure 1. Mobile edge cloud architecture](image-url)
request to another edge server or the cloud for processing, and the result will be sent back after the service is completed and retransmitted to the user.

- The cloud is powerful enough to execute all incoming service requests simultaneously, which means that the services do not need to wait for execution in the cloud.

B. Mobile Edge Computing Models

First, we give the formal definition of service requests. Service requests are proposed by consumers and sent to nearby edge servers via mobile networks.

Definition 1 (Service Request). A service request is represented as a 4-tuples \((id, t, e, E)\), where:
1) \(id\) is the unique identifier of the request;
2) \(t\) is the time the request is received;
3) \(e\) is the edge server where the request is received;
4) \(E = \{s_j\}_{j=1}^{n}\) is the set of edge servers that can provide corresponding services for the request, and \(n\) is the number of edges in the set.

As mentioned before, for each service request, only part of edges can provide services to satisfy it, so a request can only be dispatched to the cloud server or an edge server where a corresponding service is deployed.

Definition 2 (Service). A service is represented as a set of 5-tuples \((e, R, t, d_i, d_o)\), where:
1) \(e\) is the edge server or cloud server where the service is deployed;
2) \(R\) describes the resources needed for \(e\) to execute the service; \(R\) can be denoted as a set of 2-tuples \(R = \{(r_j, n_j)\}_{j=1}^{m}\), where \(m\) is the number of types of required resources, and \(r_j\) and \(n_j\) denote the type and amount of the \(j\)-th kind of resource, respectively;
3) \(t\) is the execution time, which is the makespan for \(e\) to execute the service;
4) \(d_i\) is the data size of the input parameters;
5) \(d_o\) is the data size of the output parameters.

Each service is deployed on a specific edge. Requests and services are matched according to their functions. There is a one-to-many relationship between requests and services. That is to say, for a service request, there may be many services deployed on different edges that can satisfy it, but one request corresponds to no more than one service in each edge server. Therefore, once a request is dispatched, the corresponding service is determined, so terms request and service will be interchangeably used without causing confusion thereafter in this paper.

Definition 3 (Edge Server). An edge server is represented as a 4-tuple \((S, A, I, L)\), where:
1) \(S = \{s_1, s_2, ..., s_t\}\), describing the set of services that the edge server can provide;
2) \(A\) is the available resources the edge server can utilize; it can be denoted as \(A = \{(r_j, n_j)\}_{j=1}^{n}\), where \(n\) is the total number of types of available resources and \(r_j\) and \(n_j\) denote the type and amount of the \(j\)-th kind of resource, respectively;
3) \(I\) is a function used to describe the current idle resources of the edge server; Idle resources refer to resources that are available and not yet occupied by service executions; At a given time \(t\), it can be represented by \(I_t = \{(r_j, n_j)\}_{j=1}^{n}\);
4) \(L\) is the execution sequence of the edge server, which will be introduced in detail in the following definition.

Each edge server manages an execution sequence, by which it conducts service execution, request insertion, scheduling, and resource allocation. In the following, we give the definition of execution sequence.

Definition 4 (Execution Sequence). For an edge \(e\), its execution sequence describes the services that will be executed on each time unit. It can be formulated as a time function \(L_t = \{s_j\}_{j=1}^{n}\), expressing that during time unit \(t\), edge \(e\) will execute \(n\) services, \(s_1, s_2, ..., s_n\), simultaneously.

Figure 2 shows an example of execution sequence, which shows that service \(s_1\) will be executed from time point 0 to 2, service \(s_2\) will be executed from point 1 to 3, and service \(s_3\) will be executed from point 2 to 5.

According to Definitions 2-4, for each edge server, given a time point \(t\), we can get the following resource equation:

\[\forall r, A(r) = I_t(r) + \sum_{s \in L_t} R_s(r)\] \hspace{1cm} (1)

where, \(A(r)\) is the amount of available resource \(r\) of the edge server, \(I_t(r)\) is the amount of the idle resource \(r\) at time \(t\), and \(R_s(r)\) is the amount of the required resource \(r\) of service \(s\). Equation (1) implies that, at each time point, the amount of overall available resources equals the summation of idle resources and resources occupied by service executions.

C. Service Response Time Model

In this paper, we aim to minimize the time delay between the moment when an edge server receives a service request to the moment when it gets the result. The detailed definition is as follows.

Definition 5 (Service Response Time). The response time of a service is the expected delay between the moment when a request is received and the moment when the results are got by the edge sever. It can be calculated by

\[T = t_i + t_w + t_e + t_o\] \hspace{1cm} (2)

where

1) \(t_i\) is the input parameter transmission time, which can be calculated by

\[t_i = \begin{cases} \frac{d_i}{v_{jk}}, & \text{if } e_j \neq e_k \\ 0, & \text{if } e_j = e_k \end{cases}\] \hspace{1cm} (3)
where d_i is the data size of input parameters, e_j is the edge server where the request is received, e_k is the edge or cloud server where the service is executed, and v_{jk} is the data transmission speed between servers e_j and e_k;

2) t_w is the time delay for the service waiting to be executed in the edge server;

3) t_e is the service execution time, which is the processing delay of the service;

4) t_o is the output parameter transmission time, which can be calculated by

$$t_o = \begin{cases}
\frac{d_o}{v_{jk}}, & \text{if } e_j \neq e_k \\
0, & \text{if } e_j = e_k
\end{cases} \quad (4)$$

where d_o is the data size of output parameters.

It is no doubt that if a service is executed in the same edge server where the request is received, the input and output parameter transmission time can be saved.

D. Problem Statement

Definition 6 (Request dispatching problem). Given current time t, the current states of all edges \(\{e_j = (S_i, A_j, I_j, L_j)\}_{j=1}^n \), the data transmission speed between each two servers including all edge servers and the cloud server \(\{v_{ij}\}_{i=1}^{n+1} \), and the incoming requests \(q_1, q_2, q_3, ..., q_m \), the request dispatching problem is to dispatch all the service requests to edge or cloud servers and schedule them to minimize

Minimize $\sum_{j=1}^m T_j$

s.t. \forall j,

\[
q_j \in E_{q_j}
\] (5)

\[
t + t_{q_j}^i \leq *s
\] (6)

\[
s_j^* - *s_j = t_{s_j}
\] (7)

\forall t^i > t, \forall r, \quad \sum_{s \in \mathcal{T}_j} t_{j}' R_s (r) + I_j' (r) \leq A_j (r) \quad (8)

where T_j is the response time of q_j, s_j is the selected service for q_j, E_{q_j} is the set of edge servers for q_j, $t_{q_j}^i$ is the input parameter transmission time of q_j, s_j^* and $*s_j$ are the start time and end time of service s_j, respectively, and t_{s_j} is the execution time of s_j.

As mentioned before, it is reasonable to regard minimizing response time as the optimization objective for request dispatching. In Definition 6, it is no doubt that each request should be dispatched to a server where a corresponding service is deployed, as shown by Equation (5). Equation (6) illustrates that services cannot start before the input data arrives. Equation (7) implies that the arrangement of each request is in accordance with its execution time. Moreover, the allocated resources should not exceed the available resources of the server at any time, as specified by Equation (8).

It is not easy to solve this problem. In order to minimize the overall response time, we should jointly consider the global transmission delay, processing delay and waiting delay of all requests at the same time. Local edge or nearby edges are with lower transmission delay, but they are possibly not the best choice if the processing delay or waiting delay is high. In contrast, dispatching requests to remote edges or the cloud server can cause high transmission delay, but the processing and waiting delay may be lower. Moreover, the dispatching of one request can affect the dispatching and scheduling of other requests, since our objective is to minimize the overall response time.

IV. GASD APPROACH

In this section, we present our GASD approach. It is realized by combining and tailoring the genetic algorithm and simulated annealing algorithm for the proposed service request dispatching problem.

A. GASD Method

The genetic algorithm [20] and simulated annealing algorithm [21] are two most widely used heuristic algorithms. The genetic algorithm has powerful global optimizing ability, but it can easily be trapped into local optima and its efficiency is not high. The simulated annealing algorithm is with relatively reasonable selection strategy, but its global optimizing ability is rather low. Therefore, we combine the advantages of the two algorithms by introducing the temperature parameters of simulated annealing algorithm into the genetic algorithm. The new algorithm can inherit the powerful global searching ability of the genetic algorithm, decrease the converge speed to avoid being trapped in local optima in the initial phase, and improve the converge speed to improve efficiency in the end phase.

Table I presents the corresponding relationships between the parameters of the genetic algorithm and our request dispatching problem. Figure 3 shows an example of genetic encoding scheme.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locus</td>
<td>Service request</td>
</tr>
<tr>
<td>Fitness</td>
<td>Overall response time</td>
</tr>
</tbody>
</table>

Table I. Term matching between the genetic algorithm and request dispatching

- **Chromosome:** 2 0 3 ...
- **Server:** Server 0, Server 1, Server 2, Server 3
- **Requests:** ****

Figure 3. Genetic encoding scheme

Note: The table and figure are placeholders for graphical content, which might not be visible in this text representation.
encoding. In the following, we introduce the operations in detail.

1) Evaluation and Scheduling

Evaluation is to evaluate the fitness of chromosomes. Fitness describes how well an individual fits the environment. In our model, chromosomes with high fitness correspond to dispatching plans with short overall service response time.

As mentioned before, the response time of service requests is not only determined by the dispatching of service requests, but also significantly affected by the scheduling of services inside edge servers. Therefore, given a dispatching plan, in order to calculate the overall service response time, we should give the scheduling method of services inside edge servers. Reasonable request scheduling method is also important to minimize the response time of requests. Service scheduling is a rather difficult problem, as the scheduling of one request can affect the response time of other requests executed in the same edge server. In the following, we propose a scheduling algorithm to further minimize the global response time.

Given an incoming service request q_0 and the current state of the edge server e, request scheduling is to find the optimal start time of q_0 to minimize the average response time of all service requests executed in e. According to Definitions 5 and 6, we can get conclusion that minimizing the overall response time of all requests equals minimizing the start time of q_0 plus the summation of the response time gain of all other requests dispatched to e. Therefore, we can safely transform the objective of request scheduling as Equation (9):

$$\text{Min} \left(T_{q_0} + \sum_{q \rightarrow e} T_q \right) \Leftrightarrow \text{Min} \left(* q_0 + \sum_{q \rightarrow e} (*q - *q') \right) \quad (9)$$

where $q \rightarrow e$ denotes that request q is dispatched to e, and $*q$ and $*q'$ denote the start time of q before and after the insertion of q_0, respectively. By this transformation, the complexity of the algorithm is significantly reduced, as the transmission delay and execution delay of the requests are eliminated.

Table II shows the detailed algorithm of request scheduling. For an incoming service request q_0, we first calculate its earliest start time t_s (line 1) and then search the best insert time for q_0 (lines 3-17). The possible start time for q_0 is started from t_s to the end of the execution sequence (line 3). For each time point t, we first remove all requests that start after t (lines 4-6), then insert q_0 to its earliest possible start time (lines 7-10). The insert time should satisfy that, at each time point during the execution of q_0, each type of resource required by q_0 should be satisfied (line 8). After the insertion of q_0, we insert all transferred requests to its earliest possible start time (lines 11-15). If the current scheduling plan is better than the best plan, then it is set as the best plan (lines 16-17). Finally, the best solution is returned (line 18).

2) Crossover and Mutation

Crossover is an operation to recombine two parent chromosomes to generate two new child chromosomes. In a crossover process, a point is randomly chosen from the chromosome; then, the two parent chromosomes hold their genes before the point unchanged and exchange the genes after the point, thus generates two new child chromosomes. From the request dispatching perspective, crossover is to recombine two dispatching plans by interchanging corresponding objective servers to generate two new dispatching plans.

Mutation is another operation used to generate new populations. In a mutation process, a single gene is randomly chosen from the parent chromosome and randomly changed to another feasible gene. From the request dispatching perspective, mutation is to randomly choose a service request and change its objective server to another feasible server to generate a new dispatching plan.

3) Recombination

Recombination is to recombine the service execution sequences of edge servers according new request dispatching plans generated by crossover and mutation operations. Table II presents the response time calculation algorithm. However, the time complexity of the algorithm is rather high. Therefore, we propose the recombination operation to recombine the service execution sequences of edge servers to reduce the time cost of our request dispatching algorithm.

Crossover generates new chromosomes by reserving the front parts of parent chromosomes unchanged and exchanging the later parts of parent chromosomes. Accordingly, for a specific edge, the front parts of service requests dispatched to it are remain unchanged and the later parts are exchanged. Therefore, we can recombine the scheduling of edge servers by simply exchanging the later dispatched requests. By this, the fitness of the new generated child chromosomes can be simply calculated without invoking the request scheduling algorithm.

Mutation generates new chromosomes by changing one gene of parent chromosomes. Accordingly, the object server of the corresponding request is changed from one server to another. Therefore, we can recombine the scheduling of edge servers by simply deleting the request from the old objective server and inserting it to the new objective server according to the mutation operation, thus the fitness of the new generated

<p>| Input: | The incoming request $q_0 = (id, t_s, e_0, E)$, the current state of the edge $\Theta(S,A,l,t)$, and the data transmission speed between e and e_0 |</p>
<table>
<thead>
<tr>
<th>Output:</th>
<th>The optimal scheduling plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: $t_s \leftarrow t_s + t_{t_0}$</td>
<td></td>
</tr>
<tr>
<td>2: $\hat{\theta} \leftarrow \emptyset$</td>
<td></td>
</tr>
<tr>
<td>3: for $r = t_s$ to l*</td>
<td></td>
</tr>
<tr>
<td>4: for $q \in L_t$</td>
<td></td>
</tr>
<tr>
<td>5: if $*q > t$</td>
<td></td>
</tr>
<tr>
<td>6: remove q to List</td>
<td></td>
</tr>
<tr>
<td>7: for $u = t$ to l*</td>
<td></td>
</tr>
<tr>
<td>8: if $\forall t' \in (u, u+t_{t_0}^g)$ and $\forall r \in R_q, R_q(r) < I_t'(r)$</td>
<td></td>
</tr>
<tr>
<td>9: insert q_0 to e s.t. $*q_0 = u$</td>
<td></td>
</tr>
<tr>
<td>10: break</td>
<td></td>
</tr>
<tr>
<td>11: for $q \in L_t$</td>
<td></td>
</tr>
<tr>
<td>12: for $u = t$ to l*</td>
<td></td>
</tr>
<tr>
<td>13: if $\forall t' \in (u, u+t_{t_0}^g)$ and $\forall r \in R_q, R_q(r) < I_t'(r)$</td>
<td></td>
</tr>
<tr>
<td>14: insert q to e s.t. $*q = u$</td>
<td></td>
</tr>
<tr>
<td>15: break</td>
<td></td>
</tr>
<tr>
<td>16: if $\Theta(\hat{\theta}) < \Theta(\emptyset)$</td>
<td></td>
</tr>
<tr>
<td>17: $\hat{\theta} \leftarrow \emptyset$</td>
<td></td>
</tr>
<tr>
<td>18: return $\hat{\theta}$</td>
<td></td>
</tr>
</tbody>
</table>

TABLE II. REQUEST SCHEDULING ALGORITHM ALGORITHM
chromosome can be simply calculated without invoking the request scheduling algorithm.

4) Selection

Selection performs the task to reserve superior chromosomes and eliminate inferior chromosomes. Given a parent chromosome \(\theta \), if a child chromosome \(\theta' \) is generated via crossover or mutation operation based on \(\theta \), we define \(\Delta(\theta) \) as

\[
\Delta(\theta) = \theta(\theta') - \theta(\theta)
\]

where \(\theta(\theta') \) and \(\theta(\theta) \) represents the fitness of the child and parent chromosome, respectively. Then the selection is performed as follow:

- If \(\Delta(\theta) < 0 \), it implies that the fitness of child chromosome is better, then we replace \(\theta \) with \(\theta' \) in the population;
- Otherwise, it implies that the fitness of parent chromosome is better, then we calculate the probability

\[
p = \exp \left(\frac{\Delta(\theta)}{K \text{temp}} \right)
\]

where \(K \) is a constant and \(\text{temp} \) is the current temperature; after that, a random number rand is generated in \((0, 1)\); if \(p > \text{rand} \), we replace \(\theta \) with \(\theta' \) in the population, otherwise, we reserve \(\theta \) and discard \(\theta' \).

Equation (11) guarantees that chromosomes with higher fitness values have a higher probability of being selected. Therefore, a new solution can be reserved to the new generation if it is better than or close to the old one, making the new generation become better. Worse solutions are also possibly reserved to new generations, especially in earlier iterations when the temperature is high, which decreases the converge speed to avoid the algorithm being easily trapped into local optima. In later iterations, the temperature becomes low, so the possibility for worse chromosomes to replace better chromosomes becomes low, thus improves the convergence speed and the efficiency of the algorithm.

B. Algorithm and Analysis

Given the initial parameters, the GASD algorithm executes iteratively to search for better solutions. In each iteration process, new solutions are generated by crossover and mutation operations; then, selection is conducted to reserve superior individuals and weed out inferior individuals. As thus, superior solutions are more likely transmitted to the next generations, making the next generations fit the environment better. The detailed algorithm is presented in Table III.

The algorithm begins with initialization (line 1), where initial chromosomes are randomly generated and put into the chromosome set \(\Phi \), and a chromosome is randomly selected as the optimal chromosome (line 2). Then, the pivotal iteration steps are processed (lines 4-16). The iterations are controlled by the temperature (lines 3-4) and include operations of crossover (lines 6-9) and mutation (lines 10-12), through which more new chromosomes are generated (lines 8 and 11) and selected (lines 9 and 12). The fitness of all chromosomes in the chromosome set are compared and the current optimal one is recorded (line 13). Next, the current optimal chromosome is compared with the optimal chromosome that has ever emerged in the evolutionary history, and the better one is assign to \(\bar{\theta} \) (lines 14-15). After each iteration, the temperature is lowered (line 16) and the iteration is repeated until the temperature is lower than the lower bound. Finally, \(\bar{\theta} \) is returned as the optimal chromosome (line 17).

Obviously, the time complexity of the algorithm is polynomial. Moreover, we can adjust the efficiency of the algorithm by adjusting the initialization parameters. The result may be better if one or more parameters among \(p_z, c_p, m_p, m_t, T_{max} \) and \(\alpha \) are increased, but it will cost more time to obtain the result. On the contrast, if these parameters are decreased, the efficiency will be improved, but the result may be suboptimal.

V. Experiments

We have implemented the algorithms in Python and our experiments are conducted on a MacBook Pro (macOS Sierra Version 10.12.5).

Since no standard experimental platforms and test data sets are available, we generated our experimental data in a synthetic way:

- **Service**: Each service is assigned three integers as the input data size, output data size and service execution time, respectively, which are referred to [22]. Each service requires 3 kinds of resources, and the required quantity of each kind of resource is randomly generated in (2, 5).

Service request: We assume that the number of incoming service requests in each time unit is fixed. The received edge server is randomly selected for
waiting time of services is increased, thus makes the response number, more requests will be dispatched to the edge servers, parameters are fixed. As the other overall response time of all of the five methods are rising with the increasing of the service request number. As the other request number increasing, which demonstrates the superiority of our GASD method. In addition, the overall response time of service requests dispatched by APS arises more sharply, because it only considers the data transmission speed. By this, the experiment verifies the importance to consider other factors including the transmitted data size and the execution time of requests, the conditions and accommodated services of edge servers, etc.

To examine the impact of edge number on the result of request dispatching, we set the experimental parameters according to Set 2 in Table VI. The results are shown in Table IV, which shows that the overall response time of the requests is reducing with the increasing of the edge number. With the increasing of edge servers, there are more edge servers to process the service requests, which makes the waiting time of services shorter, therefore, the overall response time of service requests decreases. The difference between the results of all methods is also decreasing with the edge number increasing. Moreover, the comparison of the five methods is in accordance with the experiments before: the result of GASD is always the best, the result of APS is always the worst, and the gap between the result of APS and the other four methods is relatively high.

From these experiments, we can draw conclusion that our GASD method can achieve the best request dispatching over the five methods. With the resources of edge servers becoming relatively shorter, the superiority of GASD becomes more obvious. Besides, the APS algorithm performs worst, which demonstrates that the conditions of edge servers and other request-related parameters have great effect on the dispatching of service requests.

B. Effectiveness of Service Scheduling

In this set of experiments, we verify the importance of service scheduling on the overall response time of service requests. To this end, we design a new method, which does
not account for scheduling of services in edge servers. This method processes service requests according to their arriving time. In the process of request dispatching, it adopts the GASD method to search for dispatching plans, without performing service scheduling. For an incoming service request, it simply find the earliest time when the idle resources are sufficient for the request and do not adjust the process sequence of the requests. We name this new GASD method as NGASD.

First, we examine the impact of request dispatching with the ranging of request number. To this end, we set the experimental parameters according to Set 1 in Table IV and implement GASD and NGASD methods. The result is shown in Figure 4. It shows that, with the request number increasing, the result of NGASD raises more sharply. This is because with the request number increasing, more service requests are dispatched to edge servers, which makes the waiting time of the services lengthened.

Then, we examine the impact of service scheduling with the range of edge number. To this end, we set the experimental parameters according to Set 2 in Table IV. The result is shown in Figure 5, from which we can see that, with the increasing of edge number, the overall response time of both methods are lowered, since the resources of edge servers are increased. Moreover, with the edge number increasing, the gap between the two methods narrows.

Therefore, we can draw conclusion that performing service scheduling to fully utilize the resources of edge servers performs a very important role in reducing the response time of service requests.

C. Efficiency Evaluation

In this subsection, we conduct two sets of experiments to examine the scalability of our method. Similarly, we also range those two parameters, i.e. request number and edge number.

Figure 6 shows the execution time of GASD with the ranging of request number, from which we can see that with the increasing of request number, the execution time of GASD method increases slightly. This is because the scale of the algorithm is affected by iteration numbers, which is determined by the temperature parameters in the initialization step. As the increasing of request number lengthens the chromosomes, which makes the time for crossover, mutation and selection operations become longer, there is a slight increase of the execution time of the algorithm, which is in accordance with the analysis in Subsection B of Section IV.

Figure 7 shows the execution time of GASD with the ranging of edge number, from which we can see that with the number of edge servers increasing, the execution time of GASD is raised slightly. This is because the increasing of edge servers makes the algorithm perform scheduling for more edge servers during the dispatching process. As the number of edge servers cannot affect the iterations of the algorithm, the execution time of the algorithm does not raise sharply.

Therefore, we can draw conclusion that the scale of the request dispatching problem only has a slight effect on the execution time of our GASD algorithm, which verifies the good scalability of GASD algorithm. Moreover, the execution time of the method is in a low order of magnitude, owing to
the great effort of the recombination strategy on reducing the computation complexity of the algorithm.

VI. CONCLUSION

In this paper, we focus on service request dispatching problem in edge cloud systems. To further reduce the overall response time of service requests, we take service scheduling of edge servers into consideration. This problem is formally modeled, and a novel heuristic method is proposed by combining and tailoring the genetic algorithm and simulated annealing algorithm. A solution recombination strategy is proposed to improve the efficiency of the algorithm. In future, we will try to solve the problem with the movement of users taken into consideration. In that case, the request dispatching problem will become closer to the real world and the method will be more beneficial.

ACKNOWLEDGMENT

This research was partially supported by Key Research and Development Project of Zhejiang Province (No. 2015C01027, No. 2015C01034, No. 2015C01029, and No. 2017C01013), Natural Science Foundation of Zhejiang Province (No. LY17F020014) and Major Science and Technology Innovation Project of Hangzhou (No. 20152011A03).

The work of Samee U. Khan was supported by (while serving at) the National Science Foundation. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES