Cloud-of-Clouds Based Resource Provisioning
Strategy for Continuous Write Applications

Zeng Zeng *, Bharadwaj Veeravalli f, Samee U. Khan ¥, and Sin G. Teo*

* Institute for Infocomm Research, Singapore, {zengz, teosg} @i2r.a-star.edu.sg
f Department of Electrical & Computer Engineering, National University of Singapore, elebv@nus.edu.sg
1 Department of Electrical & Computer Engineering, North Dakota State University, samee.khan@ndsu.edu

Abstract—Nowadays, more and more online services based
on cloud computing have taken the places of some traditional
applications (e.g., Health Care) that continuously generate large
volume of data and require data storage and analysis in time.
Such applications can be categorized as ‘“Continuous Writing
Applications” (CWA) that have particular requirements on
bandwidth, storage, computation, and service reliability. In the
meanwhile, they are very sensitive to the cost. In this paper,
we present an architecture of multiple cloud service providers
(CSPs) or “Cloud-of-Clouds” to provide services to the CWA
and propose a novel resource scheduling algorithm to minimize
the cost of entire systems. Difference from many research efforts
that focus on a single resource, we take many factors into
considerations that include user’s requirements of bandwidth,
storage and computation, the resources of CSPs that can provide,
CSPs for data backup, the configurations of Cloud-of-Clouds,
system models of CSPs, and many more. We first present
the system models of classic CWA applications to capture the
resource requirements of users on Cloud-of-Clouds. We then
present the problem formulation and our optimal strategy of user
scheduling based on Minimum First Derivative Length (MFDL)
of load paths among the systems. Through theoretical analysis,
we prove that our proposed algorithm Optimal user Scheduling
Jor Cloud-of-Clouds (OSCC) can achieve the optimal solution.

Index Terms—Cloud computing, cloud-of-clouds, continuous
writing application, cost model, queueing theory, resource pro-
visioning.

I. INTRODUCTION

We have been witnessing a paradigm shift of Information
Technology (IT) towards a pay-per-use or subscription-based
service model, known as Cloud Computing. This paradigm
provides users with many advantages, e.g., provisioning of
computing capacities, resource pooling, broad and hetero-
geneous network access, and rapid elasticity with measured
services [4]. With the emergencies of more and more Cloud
Service Providers (CSPs), e.g., Windows Azure [3] and Ama-
zon EC2 [2], many existing computer applications running in
servers or local PCs have been ported to services provided
by the CSPs. Subashini et al., argued that both small and
medium-size enterprises use cloud computing services for
many reasons, e.g., providing fast access to the computer
applications and reducing the operational costs [6]. One of
the frequently used services is Cloud Data Storage, that allows
users to store their data directly on the CSPs, and retrieve the
data easily via Internet. Many IT giants provide their users
with some free storage spaces to perform some activities,
e.g., uploading pictures and videos, and sharing files among

friends using the Cloud Data Storage (e.g., Apple’s iCloud,
and Amazon S3). In addition, the CSPs also provide some
service packages to the paid users who need more storage
spaces and more corresponding function utilities. The paid
service subscribers are main income of the CSPs.

The applications of CSPs are known as “Continuous Write
Applications” (CWA), which users can perform uploading and
accessing data in the CSPs.

In order to provide the best service for the CWA, a major
concern of a single CSP is the service availability. Amazon
mentions in the licensing agreement that it is possible that
the service might be unavailable from time to time [2]. The
user’s cloud service may be terminated for any reason at any
time. Moreover, Amazon is not held liable for any service
failure. In this paper, we address ‘“Multi-Clouds” or “Cloud-
of-Clouds” to guarantee two things, i) service availability and
ii) special requirements of the CWA. In the same time, we also
minimize the operational cost of the CSPs that provide the
CWA services. Each of the CWA has some service demands
that require resources, such as bandwidth, storage space, and
CPU cycles, which are to be provided by the CSPs. The CSPs
have full control of all of the resources, including the local
resources and that provided by the other CSPs, then provided
as services of the CWA to the users under the name of a
single CSP. We assume that the utility cost of the resources
offered by different CSPs may be different and the users, who
are geographically distributed, have different charges for the
same services. To guarantee the data availability, we make at
least two CSPs that store the same data from a single user.
In such a way, each of the CSPs can construct its own virtual
Cloud-of-Clouds and flexibly arrange the resources to satisfy
the requirements of more users and guarantee a higher Quality
of Service (QoS).

Now, we shall address an interesting problem emerging
in the domain of Cloud-of-Clouds that can provide services
to a large number of CWA users around the world: “how
can the CSPs arrange the resources of Cloud-of-Clouds,
to achieve the minimum utility cost per customer?” In this
paper, we first formulate a multi-tuple mathematic model to
specify the resources and utility costs of the CSPs, inter-cloud
communications, and the user’s resource requirements. Based
on the model, a novel cooperative multi-cloud load balancing
algorithm is proposed to achieve the minimum cost per user,
while satisfying all of the resource requirements of the users.

We organize this paper as follows. The related work is
discussed in Section II. Section III describes the model of the
CWA and formulates the optimization problem. In Section IV,
we propose our strategy to search for the optimal load path in
the Cloud-of-Clouds. In Section V, we detail our proposed al-
gorithm, named Optimal user Scheduling for Cloud-of-Clouds
(OSCC). Section VI presents benchmarking results. Finally,
we conclude our work in Section VII.

II. RELATED WORK

The strategic significance of resource utilization cost and
scheduling in networked systems is widely recognized and
has long been the subject of multiple workshops and working
group meetings [11], [14], [18]. Many resource utilization
cost models have been proposed in the literature, such as
Divisible Load Theory (DLT) [17], queueing models [13] and
learning curve [19]. The utilization costs and provisioning
problems, still remain as a challenging task in the cloud
computing paradigm in various ways. The CSPs normally
provide a menu of service templates that are combined of
many resources, such as storage, memory, network bandwidth,
and CPU. The resource provisioning problem has become
more difficult which users have different requirements on
each of the above dimensions [19]. Even Cloud computing
provides many advantages (e.g., low cost and easy access to
data), dealing with a “single cloud” provider is not a popular
option by the users. The trend will in part be dictatorial due
to the risks of service unavailability and the possibility of
security attacks. A movement towards “multi-clouds”, or in
other words, “inter-clouds”, or “cloud-of-clouds” has emerged
recently [5], [10]. Because many commercial CSPs do not
provide adequate means to securing the cloud from within the
cloud infrastructure, many recently proposed architectures of
the CSPs add relevant security and privacy features from the
outside. In doing so, the CSPs mainly attempt not to affect the
CSPs’ interfaces and inner working styles. In this work, we
consider collaboration of Cloud-of-Clouds for data backup to
improve the system reliability.

III. SYSTEM MODEL, NOTATION AND PROBLEM
DEFINITION

In this paper, we focus on CSPs that provide Infrastructure-
as-a-Service (laaS), e.g., Amazon EC2, Rackspace, and Mi-
crosoft Azure. To satisfy the special requirements of the
CWAs that require at least two CSPs to store the data for
a higher data availability, one CSP can become a Chief Cloud
of multiple clouds and provide all of the services for the
CWA with its own name. We assume that we have the Chief
Cloud that can schedule the resources of other CSPs. We use
Co to denote the set of CSPs. CSP, is used to construct
the Cloud-of-Clouds consequently, and it can be the Chief

Cloud. We have Cy = {CSPy,,CSPy,...,CSP,}. Each
CSP;, (k = 0,1,2,...,n) has some resources and we use
a tuple Ry = [Bx, Sk, Ci] to denote the required resources

of CSP, where Bj is the bandwidth, Sy is the storage
space, and C} is the computational capability of CSP.

Here, we use Ry = [Bg, Sk, Ck] to denote the up-bound
resources that C'S P}, can provide to C'SFP,. We use a vector
Pr = [Ps,,Ps,,Pc,] to denote the utility cost functions
of the C'SP; for the resources of bandwidth, storage, and
computation, respectively.

We assume that C'SP, has m users, where m > n, and
the users can be classified into .J categories according to the
service packages. For example, C'S P, can provide either one
days, one month, or one year of storage service packages
with different service charges. Different kinds of users can
be assigned with different priorities. The higher priority the
category of users has, the more the users pay for the resources
provided by the C'SF; and then, can have more data stored
in the system. We use &/ = {u]} to denote the set of users
within the C'SPy, where u! is a user i, who has a priority of
j(G=1,....J) (:=1,...,m). Each user u] has the basic
resource requirements of bandwidth, storage, and computation
that we denote as r! = [b], s}, c!]. All of the requirements of
the users must be satisfied by Cy for a successful resource
allocation.

A. Customer’s Utility Cost Model of CWA

When a customer ¢ subscribes to a CWA package j with

a service provided by C'SFy, the C'SP; must decide which
CSP, denoted as C'SP;_cqge, in Co, uZ shall be connected di-
rectly. Another C'S P must receive and store the data sent from
the CSP;_cq4e as backup, which is denoted as CSP;_pqck-
Here, we assume that the C'SP;_.44. only chooses one CSP
from N;_cqge as the CSP;_pacr (Ni—eage is a set of neighbor-
ing nodes of C'SP;_p4ck). The utility cost function of customer
i is denoted as fcost(i), which includes the bandwidth cost of
link from customer ¢ to CSP;_cqge is fcost(i, Bi—cdgqe), and
the bandwidth cost of link from CSP;_.44e to CSP;_pack
is fcost(i — back,B;_pack). The computational cost of
customer 7’s data processed on CSP;_.qqc is denoted as
feost(i, Ci—cage), and the storage cost of customer 4’s data on
CSPi_cige and CSP;_pqcr are denoted as fcost(i, Si—cage)
and fcost(i, Si_pack), respectively. Here, we use r] < Ry to
define b < By, s) < Sk,c] < Cj. Then, we can obtain:

feost(i) = feost(i, Bi—eage) + feost(i, Si—eage)+
feost(i, Ci—cage) + feost(i, Bi—pack)+
feost(i, Si—pack), (1)

subject to:

J > J R J g
i = Rifedgey bl < Bifbacky S5 < Sifback:-

2

If we use 7;_peck to denote the resource required by
customer ¢ on C'SP;_pqck, then we have 7;_pacr = [bs, 8, 0],
where the computational requirement is zero. Consequently,

the cost function of (1) can be converted to:
. i T j T
fCOSt(Z) = ’I’g ’ ,Pifedge + T‘g—back ’ ,Pifbaclw

3)

= Rifback, and

with subject to 1! =< Ri_cdges 7 pack

CSP;_cage and CSPi_pqcr; are the neighboring CSPs.

User Pool

Fig. 1. Illustration of CSPs for Cloud-of-Clouds

B. Problem Formulation

In this section, we use the models to formulate our problem
in detail. We first obtain the system cost utility function of all
of the users ¢ on Cy as:

m

F(Co,U) = Z feost (i)
i=1
mo
= Z(Tf : PzT—edge + Ti—back PiT—back:)? 4)
i=1
subject to:

Rijvespeeco = R &)

From (5), we observe that the utility cost function of C'SP,
say P, is one of the critical factors that can affect the entire
resource scheduling of the Cloud-of-Clouds. Normally, P can
be classified into two kinds of functions, namely linear or
non-linear functions [16]. In the Divisible Load Theory (DLT)
[17], linear functions are used to represent computational and
communication utility cost functions. Linear functions are
simple and easy for problem formulations. However, if we con-
cerned about the real-time situations, such as system queueing
[14], more complicated non-linear functions are formulated to
quantify the “costs” [12]. Different cost functions can lead to
various resource scheduling in the Cloud-of-Clouds. In this
paper, we utilize different cost functions and propose some
general algorithms to minimize the total utilization cost of the
Cloud-of-Clouds.

IV. OPTIMAL LOAD PATHS WITHIN THE
CLOUD-OF-CLOUDS

As we mentioned in the previous section, when a user reg-
isters a CWA, the Cloud-of-Clouds must seamlessly provide
the user two connected CSPs. One is the Chief CSP and
another is used for data backup. For simplicity, we use Fig. 1
to illustrate the CSPs of the Cloud-of-Clouds. If C'SP; is a
user’s Chief CSP, then the user has two potential load paths:
(CSP,,CSPy) and (CSP,,CSPs). The complexity of the
potential load paths for each of the user is O(nk), where n is

the number of CSPs within the system and k is the average
number of neighboring CSPs. Here, we use Py to denote the
set of all potential paths within the Cloud-of-Clouds. Below,
we analyze the load path cost.

A single CSP can be considered as either the Chief CSP or
a data backup CSP. Referring to (1) and (3), we can observe
that there is no requirement on the computational resources
for the backup CSP. We assume that a set of users U that
require services from C'SP; can be further divided into two
sub-sets Uj_cqge and Uj_pqcr, Where Uj_qge 1s the set of
users using C'SP; as the Chief CSP and Uj_pq is the set of
users using C'S P, as the data backup CSP. Moreover, we must
understand Uj_cdge (\Ul—pack = 0 and Uj_cage U Ur—pack =
U;. We obtain that the utilization cost function of a single

CSP;:
> >

E(U) = (7 -PF) +
Vi€Ul—edge Vi€U]—back

Pl (©)

If a new user u; chooses CSP, as the Chief CSP or a
data backup CSP, then the new set of users U; change to
Ul =Ulcage UUi-back ot Ui = Ui—cage U] poex, Where
Ul/—edge = {UZ*Ed!]e’ui} and Ull—back = {Ul*bGCk’ui}' From
(6), we can obtain that the new utilization cost of the C'SP,
due to a new user u; is Fi(U]).

We use F'p, to denote the cost of u; along a path P;, where
P; is the path (C'SP_cqge; CSPi_pack). Consequently, we
obtain:

Fpi = Fifedge(il—edge) - Fifedge(U’ifedQE)
+Fi—back(Uz‘/—back) - Fi—back(Ui—back')- (7)

It is worthy to mention that 17 - PL_, +7i_pack P poer =
Fp,, Vi € U. From (7), the objective function described in (5)
can be rewritten as:

m

E J T T
(Ti ' Pi—edge + Ti—back Pi—back)7
i=1

= > Fr, ®)
i=1

where CSP;_cqge and CSP;_p,c are the neighboring CSPs.

Now, we can observe that each user has several load paths
with different path costs. To achieve the minimized utilization
cost of the entire system, we must determine the optimal cost
path for each user one by one. To do so, in the following, we
present the definition of the First Derivative Length (FDL) of
the load path:

F(Cod) =

/ _ J T T /
Fp, = (r] “Pi_cdge T Ti—back “Pi—back)
Jj . pT T

- 8(711 Pi—edge) a(ri*b(wk ’ Pi—back)
aT’J 8Tifback

3

aPzT—e e
Tjdg + Pijlback +

3

T J
,Pifedge + L

T
alpifback

87'i7back

€))

Ti—back *

Combining (1), (9), rf = [bg,sg,cg],andrf_back = [bg,sg,O],
we obtain:

Fp = fcost(i, Bi—edge) + fcost(i, Si—eage)
. i Ofcost(i, Bi—cdge)
+ feost(i,Ci_cage) + b = g
f (dg) 8()3
4o 9f cost(i, Sicdge) s 9fcost(i, Ci—cdge)
ds! oc]
) i Ofcost(i, Bi—pack)
+ feost(iy, Si—pack) + b - L
feost(back) o]
1 t(e i—bac
+ feost(i, Bi—pack) + 57 - Ofcos (;’f b k). (10)
s

K3

A. Optimal Load Path for Each User

For each user u;, among all the P, paths, there must be
at least one path, denoted as P;, whose FDL is minimum.
This path is defined as the minimum first derivative length
(MFDL). Next, we use the theorem of our previous work [21]
as follows.

Theorem 1. The set of P,, where Yu; € U, is an optimal
solution to (5) if and only if every user i selects the path with
the MFDL from the set of all possible paths, P,. Furthermore,
if fcost is convex, then P; is also optimal if and only if the
path with the MFDL in Py that provides a service to u;.

For space limitation, we put the proof in our technical report
[20]. In this work, we assume that users have been categorized
into several classes with different priorities. We schedule the
users according to the amount of services required with the
following scheduling sequences:

Sequence A (SA): Randomly select a user from all of the
users who are not scheduled yet;

Sequence B (SB): Sort the users according to the priorities
from low to high, and randomly select the un-selected users
within the same priority one by one, and;

Sequence C (SC): Sort the users according to the priorities
and then sort the users with the same priority according to the
amount of required services. Then, select the users one by one
from high to low.

V. THE PROPOSED ALGORITHM

We propose an algorithm to achieve a near-optimal solution
of (8) that is referred as the “Optimal user Scheduling for
Cloud-of-Clouds” (OSCC). Our proposed algorithm has three
phases. The first phase is the initialization, in which we
construct the set of load paths Py. As we discussed before,
each of the CSP within the system can construct the load path
with any neighboring CSP. If the Cloud-of-Clouds is fully-
connected and the number of clouds within the system is n,
then each of the CSP has n — 1 load paths and within the
system there are a total of n- (n — 1) load paths. Once Py has
been constructed, we obtain the FDL of each path according
to (10) and then, determine the minimum one among Fp. It
is worthy to mention that if there are two or more load paths
with the same MFDL, we randomly choose one as the MFDL

among them. We sort the users in I/ according to the sequences
SA, SB, or SC. For space limitation, we put the details of our
algorithm in the technical report [20].

VI. PERFORMANCE EVALUATION AND DISCUSSIONS

In this section, we select a discrete-event approach that
can model, simulate, and also evaluate the system [15]. We
implemented the simulation in C++ to evaluate the proposed
and existing algorithms. The existing round-robin algorithms
[13] are selected as the benchmark algorithms to compare the
performance with OSCC. In the round-robin algorithms, we
construct a list of all paths by selecting one path for each user
one by one, until no more user can be added into the system.

Our experiment settings are as follows. We set 10 CSPs.
Each CSP can randomly choose at least one and at most nine
other CSPs as its neighbors. The resources, Ry, of C'S Py are
randomly generated within the following ranges, i.e., the band-
widths of the CSPs are between [10, 1000] gigabit per second
(GBPS), the storage spaces of CSPs are between [2,200]
PB, the number of virtual machines in CSPs are between
[1000, 100000], and the value of uf is between [500,5000]
MIPS. The performances of all the virtual machines are same.
oy, (for bandwidth), 5 (for storage), and ~y; (for computation)
are randomly selected from [1,100] with the unit of cost per
24 hours. The upper bounds of the resources for each CSP are
set to 0.95 of the total CSP resources.

In the experiment, we assume that there are four kinds of
users: (1) uz1 Surveillance users; (2) uf Health Care users;
(3) u3: Smart home users; and (4) u;: Environmental monitor
users. We assume that the resource requirements of these
four categories of users are defined as r} = [200, 100, 100],
r? = [100, 50, 1000], r} = [50, 20, 30], and r} = [10, 10, 10]
with the units of [KBPS, GB, MIPS], respectively'. In each
experiment, we increase the number of users until no user
can be scheduled any more. For each user, we randomly
determine the category from one to four following the uniform
distribution.

A. Experiments with Small Size of Cloud-of-Clouds

We first randomly generate the parameters of all CSPs.
Subsequently, A set of users is generated with random classes.
We then schedule the user using the OSCC' and round-robin
(RR) algorithms, respectively. At first, we just use the SA
sequence and later, we will discuss the effects of the sequences
by carrying out some further experiments.

The upper bound utilizations of bandwidth, storage, and
computation capability were set to 0.95. We stop a simulation
when there are no load paths available for new users. For every
set of users within the experiments, we recorded the average
utility cost per user with the number of users increasing until
the procedures stop, and the results are shown in Fig. 2(b). To

It may be noted that the parameter values chosen are for the purpose of
demonstration of the strategies and are not restricted to the actual parameter
values in a practical setting.

TABLE I
THE UTILIZATIONS OF RESOURCES IN CSPs

Types Utilizations of CSP 1 to CSP 10
OSCC (px) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
RR (px) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
OSCC (band.) | 0.001 0.039 0.041 0.013 0.075 0.007 0.012 0.448 0.004 0.011
RR (band.) 0.012 0.053 0.036 0.029 0.017 0.016 0.029 0930 0.009 0.020
OSCC (storage) | 0.003 0.029 0.066 0.021 0932 0.031 0.016 0.024 0.018 0.013
RR (storage) 0.046 0.040 0.060 0.047 0.210 0.076 0.035 0.051 0.043 0.024
our surprise, we find that both OSCC' and RR stop scheduling 1o
when the number of users reaches 754, 054, which means that 1. .
only 754,054 users can be supported with the current system N /
settings. Table I shows the resource utilizations of all the CSPs S S — -
when no users can be added to the system. S
Again, the bottleneck of the entire system is the computation 5"
capability as depicted in Table I. We find that in either O.SCC o
or RR pi, = cp/(nk - pr)lvesp, has reached 0.95, that 105//

is the upper bound of the system. The utilizations of other
resources, such as storage and bandwidth, are very low and
few of the utilizations have been exceeded 10%. Therefore, in
such system settings, when the number of users reaches the
maximum number which the system can support, computation
costs dominate the total costs. Referring to Fig. 2(b), except
the last point, the OSCC' performs much better than RR.

In Fig. 2(b), when the number of users is small, due to the
facts that the utilizations of bandwidth and computation are
very low and the costs of storage are fixed, the user costs are
dominated by storage costs. The OSCC' can search the best
load paths for each users to guarantee the minimum costs. The
RR schedules the users one by one with the consideration of
whether the resources can support the users or not. However,
without the awareness of the utilizations of the resources along
the paths, the RR assigns more and more users to some paths
that can be overloaded soon and while, the utilizations of many
other paths are still very low. As the number of users increases,
the costs soon are dominated by the lowest resources (in such
the setting, the lowest one is the CSP that has the lowest
computation capability) in the system and then, rises rapidly.
Soon after the path with lowest resources become saturated,
the load paths with the second, third lowest resources become
saturated one by one. This explains why when the number of
users reaches some small point, the costs of the RR increases
steadily. Because we consider the cost per user, when more
users join in the system, the cost may fluctuate as indicated in
the Fig. 2(b), and we can anticipate that the users along the
paths with lowest resources will have much more costs than
the average. On the contrary, our proposed OSCC' algorithm
considers the users equally and the cost of each user can be
nearly the same in the system. Only after the number of users
reaches around 400, 000 that the cost starts rising slightly until
the entire system becomes saturated.

B. Experiments on Medium to Large Size of Cloud-of-Clouds

To evaluate the scalability of the OSCC' algorithm, we
compare the OSCC with RR on Cloud-of-Clouds, the size of

15 2 25
Number of Users

0 05 1
Number of Users

(@) (®)

Fig. 2. Performance comparisons of OSCC algorithm and round-robin with
SA, (a) Computation capacity is low; (b) System settings have been balanced.

which is large to medium. We randomly generate a Cloud-of-
Clouds with 50 CSPs. The topology of the system is randomly
generated and each CSP may have one to nine neighbor-
ing CSPs. Similar to Section VI-A, we set the computation
resources to be the bottleneck of the system at first and
then, balance the recourses to evaluate the performance of the
OSCC and RR algorithms.

Fig. 2(a) shows the result of large to medium size systems
to support more users compared to the small size of Cloud-of-
Clouds, when the computation capacity is the bottleneck. The
cost per user of the RR increases rapidly when the number of
users is very small and nearly hit the peak around 0.2 x 10,
which is 0.6% of 5.8% that is the total number of the users.
On the other hand, the cost per user of the OSCC' is kept
within a very low level in most cases, and hits one when the
number of users exceeds 5 x 10%; whereas, the cost per users
of the RR again is around 50.

We balance the computation capacities of CSPs as similar
in Section VI-A Fig. 2(b) shows that 28,196,493 users can
be supported by the OSCC' and only 26, 388,862 users can
be supported by the RR. The cost of users can exceed one for
both the OSCC' and RR algorithms as depicted in Fig. 2(b).
From the experiments, we show that our proposed OSCC is
efficient, flexible and extensible. It can be used especially for
large scale systems.

C. Effects of Scheduling Sequences on the OSCC and RR
Algorithms

As mentioned earlier, we evaluate the four categories of
users where each has different resource requirements or pri-
orities. Given a set of users, the algorithms schedule them

Cost per User in Unit

[\
8 N
N
~
7 ~_
AN _
6 ~ = 2F \\
~ 5 ~
~ = -
5 ~ 5 ~
S 2 IS
~ 2 ~
L E— |3 T~
3 81 —~—
) ’ .
1 -

Number of Users n

(b)

Number of Users 0
(a)

Fig. 3. Performance comparisons of algorithms with sequences SA, SB, and
SC. (a) OSCC; (b) RR.

one by one by following some pre-defined sequences, e.g.,
SA, SB, and SC, as presented in the previous section. To
evaluate the performance of scheduling sequences on the final
results, we run several experiments based on small size Cloud-
of-Clouds for the OSC'C' and RR algorithms. We experiment
with 100,000 users where each type of the users is set to
25, 000.

In Fig. 3(a), OSCC — SA, OSCC scheduling the users
by following SA sequence, performs steady and the cost
per user changes slightly that is around 4 x 10~° units. For
OSCC — SB, which schedules the users with the lowest
priorities first, the cost per user increases with more and more
users scheduled. On the other hand, for OSCC — SC, which
schedules the users with the highest priorities first, the cost
per user decreases. Until all of the users have been scheduled,
the three curves converge to a single point. In Fig. 3(b), the
curves of RR—SA, RR— SB, and RR — SC converge to a
point around 1 x 10~* when all users have been scheduled.

From the experiments, the scheduling sequences have no or
very small effect on the results. In the Cloud-of-Clouds, we
consider millions of users, it is unlikely to re-schedule all of
the users that have been settled for some newly coming users.
Therefore, our proposed OSCC' algorithm also may be used
in dynamic scenarios.

VII. CONCLUSIONS

We propose an optimal user scheduling algorithm, Optimal
user Scheduling for Cloud-of-Clouds (OSCC) for CWA ap-
plications. Our algorithm considers many factors that include
user’s requirements of the bandwidth, the storage, and the
computation, the resources of CSPs that can provide, CSPs
for data backup, and the configurations of Cloud-of-Clouds,
the cost models of CSPs. In our solution, we construct a list
of the potential load paths that selects the optimal one with
the MFDL for each of the users within the system.

We compare the performance of the OSCC and RR
algorithms. Our experiment have showed that the OSCC is
scalable, extensible, and also easy for implementation. The
OSCC outperforms the RR in all fields under considerations,
including the cost per user, the maximum number of users
the system can support, and the resource utilizations of

CSPs. Our solution can also be applied to other utility cost
models, such as the learning curve, in order to satisfy the
various requirements of different Cloud-of-Clouds. We can
easily extend the OSCC to dynamic situations without a
pre-defined set of users.

Acknowledgement: The work is supported by 1st Singapore-
China NRF-NSFC Grant (No. NRF2016NRF-NSFC001-111).
Samee U. Khan’s work is supported by (while serving at) the
National Science Foundation.

REFERENCES

[1] P. Mell and T. Grance, “Draft NIST Working Definition of
Cloud Computing,” Referenced on Jun. 3rd, 2009, Online at
http://csrc.nist.gov/groups/SNS/cloud-computing/index.html, 2009.

[2] Guohui Wang, “The Impact of Virtualization on Network Performance of
Amazon EC2 Data Center,” IEEE INFOCOM Proceedings, Mar. 14-19,
2010.

[3] T. Redkar and T.Guidici, Windows Azure Platform, APRESS, 2011.

[4] S. U. Khan, A. Y. Zomaya, and L. Wang, “Scalable Computing and
Communications: Theory and Practice,” Wiley-IEEE Computer Society
Press, New Jersey, USA, 2013, 880 p., 303 illus., ISBN 978-1-1181-
6265-1.

[5] I. Houidi, M. Mechtri, W. Louati, and D. Zeghlache, “Cloud Service De-
livery Across Multiple Cloud Platforms,” IEEE International Conference
on Services Computing, pp. 740-741, 2011.

[6] S. Subashini and V. Kavitha, “Survey on Security Issues in Service
Delivery Models of Cloud Computing,” Journal of Network and Computer
Applications, vol. 34, no. 1, pp. 1-11, 2011.

[7]1 L. Atzori, A. Lera, and G. Morabito, “The Internet of Things: A Survey,”
Computer Networks, vol. 54, no. 15, pp. 2787-2850, Oct. 2010.

[8] http://www.camba.tv.

[9] M. Dia, G. Juan, O. Lucas, and A. Ryuga, “Big Data on the Internet
of Things,” 6th Internet Conference on Innovative Mobile and Internet
Serivces in Ubiquitous Computing, pp. 898-900, 2012.

[10] M. A. Zlzain, E. Pardede, B. Soh, and J. A. Thom, “Cloud Computing
Security: From Single to Multi-Clouds”, Hawaii International Conference
on System Sciences, pp. 5490 - 5499, 2012.

[11] F. Franciosi and W. Knottenbelt, “Data Allocation Strategies for the
Management of Quality of Service in Virtualised Storage Systems,” Mass
Storage Systems and Technologies (MSST), 2011 IEEE 27th Symposium
on, pp. 1-6, 23-27 May 2011.

[12] Jie Li, and Hisao Kameda, “Load Balancing Problems for Multiclass
Jobs in Distributed/Parallel Computer Systems,” IEEE Trans. Computers
vol. 47, no. 3, pp. 322-332, March 1998.

[13] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, Inc., 1992.

[14] Z. Zeng and V. Bharadwaj, “Design and Performance Evaluation of
Queue-and-Rate-Adjustment Dynamic Load Balancing Policies for Dis-
tributed Networks,” IEEE Trans. Computers, vol. 55, no. 11, pp. 1410-
1422, Nov. 2006.

[15] J. J. Kinney, Probability: An Introduction with Statistical Applications,
New York: John Wiley & Sons, 1997.

[16] M. Avriel, Nonlinear Programming Analysis and Methods, Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1997.

[17] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi, Scheduling
Divisible Loads in Parallel and Distributed Systems, IEEE Computer
Society Press, Los Almitos, California, 1996.

[18] J. Cao, K. Hwang, K. Li, and A. Y. Zomaya, “Optimal Multiserver
Configuration for Profit Maximization in Cloud Computing,” IEEE Trans.
Parallel and Distributed Systems, vol. 24, no. 6, pp. 1087-1096, Jun. 2013.

[19] A. Gera and C. H. Xia, “Learning Curves and Stochastic Models for
Pricing and Provisioning Cloud Computing Services,” Service Science,
vol. 3, no. 1, pp. 99-109, 2011.

[20] Z. Zeng, V. Bharadwaj, S.C. Khan, and S.G. Teo “Technical Report
for Cloud-of-Clouds Based Resource ProvisioningStrategy for Contin-
uous Write Applications”, https://www.dropbox.com/s/v1jlvmrOzypau8t/
COMM2017.pdf?d1=0

[21] Z. Zeng and V. Bharadwaj “Optimal metadata replications and request
balancing strategy on cloud data centers,” IEEE Trans. Parallel and
Distributed Systems, vol. 74, no. 10, pp. 2934-2940, 2014.

